ABD/GLOBAL: +1-949-461-9292
AVRUPA: +39-011-3052-794
BİZE ULAŞIN

Kategori Profilometri | Hacim ve Alan

 

Tribometre Kullanarak Döşemenin Aşamalı Aşınma Haritalaması

Döşemenin Aşamalı Aşınma Haritası

Entegre Profilometre ile Tribometre Kullanımı

Tarafından hazırlanmıştır

FRANK LIU

GİRİŞ

Zemin kaplama malzemeleri dayanıklı olacak şekilde tasarlanmıştır ancak genellikle hareket ve mobilya kullanımı gibi günlük aktivitelerden dolayı aşınma ve yıpranmaya maruz kalırlar. Uzun ömürlü olmalarını sağlamak için çoğu zemin kaplaması hasara karşı dayanıklı koruyucu bir aşınma katmanına sahiptir. Ancak aşınma tabakasının kalınlığı ve dayanıklılığı döşeme tipine ve yaya trafiğinin seviyesine bağlı olarak değişiklik göstermektedir. Ayrıca zemin yapısındaki UV kaplamalar, dekoratif katmanlar ve sır gibi farklı katmanların aşınma oranları da farklılık gösterir. Aşamalı aşınma haritalamanın devreye girdiği yer burasıdır. NANOVEA T2000 Tribometreyi entegre bir şekilde kullanmak 3D Temassız ProfilometreDöşeme malzemelerinin performansının ve ömrünün hassas bir şekilde izlenmesi ve analizi yapılabilir. Bilim insanları ve teknik profesyoneller, çeşitli zemin kaplama malzemelerinin aşınma davranışı hakkında ayrıntılı bilgi sağlayarak yeni zemin kaplama sistemlerini seçerken ve tasarlarken daha bilinçli kararlar verebilirler.

ZEMİN PANELLERİ İÇİN AŞAMALI AŞINMA HARİTALAMASININ ÖNEMİ

Zemin testleri geleneksel olarak aşınmaya karşı dayanıklılığını belirlemek için bir numunenin aşınma oranına odaklanmıştır. Ancak aşamalı aşınma haritalaması, test boyunca numunenin aşınma oranının analiz edilmesine olanak tanıyarak aşınma davranışı hakkında değerli bilgiler sağlar. Bu derinlemesine analiz, sürtünme verileri ile aşınma oranı arasında korelasyon kurulmasına olanak tanıyarak aşınmanın temel nedenlerini belirleyebilir. Aşınma oranlarının aşınma testleri boyunca sabit olmadığı unutulmamalıdır. Bu nedenle, aşınmanın ilerleyişini gözlemlemek numunenin aşınması hakkında daha doğru bir değerlendirme sağlar. Geleneksel test yöntemlerinin ötesine geçerek, aşamalı aşınma haritalamasının benimsenmesi, zemin testi alanında önemli ilerlemelere katkıda bulunmuştur.

Entegre 3D Temassız Profilometreye sahip NANOVEA T2000 Tribometre, aşınma testi ve hacim kaybı ölçümleri için çığır açan bir çözümdür. Pim ile profilometre arasında hassas bir şekilde hareket etme yeteneği, aşınma izi yarıçapındaki veya konumundaki herhangi bir sapmayı ortadan kaldırarak sonuçların güvenilirliğini garanti eder. Ancak hepsi bu kadar değil; 3D Temassız Profilometrenin gelişmiş özellikleri, yüksek hızlı yüzey ölçümlerine olanak tanıyarak tarama süresini yalnızca saniyelere indirir. 2.000 N'ye kadar yük uygulama ve 5.000 rpm'ye kadar eğirme hızlarına ulaşma kapasitesiyle NANOVEA T2000 Tribometre değerlendirme sürecinde çok yönlülük ve hassasiyet sunar. Bu ekipmanın aşamalı aşınma haritalamasında hayati bir rol oynadığı açıktır.

 

ŞEKİL 1: Aşınma testinden önce numune kurulumu (solda) ve aşınma izinin aşınma testi sonrası profilometrisi (sağda).

ÖLÇÜM HEDEFI

Aşamalı aşınma haritalama testi iki tip döşeme malzemesi üzerinde gerçekleştirilmiştir: taş ve ahşap. Her numune, zaman içindeki aşınmanın karşılaştırılmasına olanak tanıyan 2, 4, 8, 20, 40, 60 ve 120 saniyelik artan test süreleri ile toplam 7 test döngüsüne tabi tutulmuştur. Her test döngüsünden sonra, aşınma izinin profili NANOVEA 3D Temassız Profilometre kullanılarak çıkarılmıştır. Profilometre tarafından toplanan verilerden, deliğin hacmi ve aşınma oranı, NANOVEA Tribometer yazılımındaki veya yüzey analiz yazılımımız Mountains'deki entegre özellikler kullanılarak analiz edilebilir.

NANOVEA

T2000

aşınma haritalama test örnekleri ahşap ve taş

 ÖRNEKLER 

AŞINMA HARITALAMA TEST PARAMETRELERI

YÜKLE40 N
TEST SÜRESİdeğişir
HIZ200 rpm
RADIUS10 mm
MESAFEdeğişir
KÜRESEL MALZEMETungsten Karbür
KÜRESEL ÇAP10 mm

Yedi döngü boyunca kullanılan test süreleri şöyleydi 2, 4, 8, 20, 40, 60 ve 120 saniyesırasıyla. Kat edilen mesafeler 0.40, 0.81, 1.66, 4.16, 8.36, 12.55 ve 25.11 metre.

AŞINMA HARITALAMA SONUÇLARI

AHŞAP DÖŞEME

Test DöngüsüMaksimum COFMin COFAvg. COF
10.3350.1240.275
20.3370.2070.295
30.3800.2290.329
40.3930.2650.354
50.3520.2050.314
60.3450.1990.312
70.3150.2110.293

 

RADYAL YÖNLENDİRME

Test DöngüsüToplam Hacim Kaybı (µm3Toplam Mesafe
Seyahat Edilen (m)
Aşınma Oranı
(mm/Nm) x10-5
Anlık Aşınma Oranı
(mm/Nm) x10-5
12962476870.401833.7461833.746
23552452271.221093.260181.5637
35963713262.88898.242363.1791
48837477677.04530.629172.5496
5120717995115.40360.88996.69074
6147274531827.95293.32952.89311
7185131921053.06184.34337.69599
ahşap progresif aşınma oranı vs toplam mesafe

ŞEKİL 2: Kat edilen toplam mesafeye karşı aşınma oranı (solda)
ve ahşap döşeme için test döngüsüne karşı anlık aşınma oranı (sağda).

ahşap zemi̇ni̇n aşamali aşinma hari̇tasi

ŞEKİL 3: COF grafiği ve ahşap zemin üzerindeki #7 testinden aşınma izinin 3D görünümü.

aşınma haritası çıkarılmış profil

ŞEKİL 4: Test #7'den Ahşap Aşınma İzinin Kesit Analizi

aşamalı aşınma haritalama hacim ve alan analizi

ŞEKİL 5: Ahşap Numune Testi #7 üzerindeki Aşınma İzinin Hacim ve Alan Analizi.

AŞINMA HARITALAMA SONUÇLARI

TAŞ DÖŞEME

Test DöngüsüMaksimum COFMin COFAvg. COF
10.2490.0350.186
20.3490.1970.275
30.2940.1540.221
40.5030.1240.273
50.5480.1060.390
60.5100.1290.434
70.5270.1810.472

 

RADYAL YÖNLENDİRME

Test DöngüsüToplam Hacim Kaybı (µm3Toplam Mesafe
Seyahat Edilen (m)
Aşınma Oranı
(mm/Nm) x10-5
Anlık Aşınma Oranı
(mm/Nm) x10-5
1962788460.40595.957595.9573
28042897311.222475.1852178.889
313161478552.881982.355770.9501
431365302157.041883.2691093.013
51082173218015.403235.1802297.508
62017496034327.954018.2821862.899
74251206342053.064233.0812224.187
taş döşeme aşınma oranı vs mesafe
taş döşeme anlık aşınma oranı tablosu

ŞEKİL 6: Kat edilen toplam mesafeye karşı aşınma oranı (solda)
ve taş döşeme için test döngüsüne karşı anlık aşınma oranı (sağda).

taş zemin 3d aşınma izi profili

ŞEKİL 7: COF grafiği ve taş zemin üzerindeki #7 testinden aşınma izinin 3D görünümü.

taş zemin aşamalı aşınma haritalama çıkarılmış profil
taş döşeme çıkarılan profil maksimum derinlik ve yükseklik delik ve tepe alanı

ŞEKİL 8: Test #7'den Taş Aşınma İzinin Kesit Analizi.

ahşap zemi̇n aşamali aşinma hari̇talama haci̇m anali̇zi̇

ŞEKİL 9: Taş Numune Testi #7 üzerindeki Aşınma İzinin Hacim ve Alan Analizi.

TARTIŞMA

Anlık aşınma oranı aşağıdaki denklem ile hesaplanır:
döşeme formülünün aşamalı aşınma haritası

V'nin bir deliğin hacmi, N'nin yük ve X'in toplam mesafe olduğu bu denklem, test döngüleri arasındaki aşınma oranını tanımlar. Anlık aşınma oranı, test boyunca aşınma oranındaki değişiklikleri daha iyi tanımlamak için kullanılabilir.

Her iki numune de çok farklı aşınma davranışlarına sahiptir. Zaman içinde, ahşap döşeme yüksek bir aşınma oranıyla başlar ancak hızla daha küçük, sabit bir değere düşer. Taş döşeme için aşınma oranı düşük bir değerden başlıyor ve döngüler boyunca daha yüksek bir değere doğru eğilim gösteriyor. Anlık aşınma oranı da çok az tutarlılık göstermektedir. Farklılığın spesifik nedeni kesin değildir ancak numunelerin yapısından kaynaklanıyor olabilir. Taş döşeme, ahşabın kompakt yapısına kıyasla farklı şekilde aşınacak olan gevşek tanecik benzeri parçacıklardan oluşuyor gibi görünmektedir. Bu aşınma davranışının nedenini belirlemek için ek test ve araştırmalara ihtiyaç duyulacaktır.

Sürtünme katsayısından (COF) elde edilen veriler, gözlemlenen aşınma davranışıyla uyumlu görünmektedir. Ahşap döşeme için COF grafiği, sabit aşınma oranını tamamlayacak şekilde döngüler boyunca tutarlı görünmektedir. Taş döşeme için ortalama COF, aşınma oranının da döngülerle birlikte artmasına benzer şekilde döngüler boyunca artmaktadır. Sürtünme grafiklerinin şeklinde de belirgin değişiklikler vardır, bu da bilyenin taş numuneyle nasıl etkileşime girdiğinde değişiklikler olduğunu göstermektedir. Bu durum en belirgin şekilde döngü 2 ve döngü 4'te görülmektedir.

SONUÇ

NANOVEA T2000 Tribometre, iki farklı zemin numunesi arasındaki aşınma oranını analiz ederek aşamalı aşınma haritalaması yapma yeteneğini sergiliyor. Sürekli aşınma testinin durdurulması ve yüzeyin NANOVEA 3D Temassız Profilometre ile taranması, malzemenin zaman içindeki aşınma davranışı hakkında değerli bilgiler sağlar.

Entegre 3D Temassız Profilometreye sahip NANOVEA T2000 Tribometre, COF (Sürtünme Katsayısı) verileri, yüzey ölçümleri, derinlik okumaları, yüzey görselleştirme, hacim kaybı, aşınma oranı ve daha fazlası dahil olmak üzere çok çeşitli veriler sağlar. Bu kapsamlı bilgi seti, kullanıcıların sistem ile numune arasındaki etkileşimleri daha iyi anlamalarını sağlar. Kontrollü yükleme, yüksek hassasiyet, kullanım kolaylığı, yüksek yükleme, geniş hız aralığı ve ek çevresel modülleri ile NANOVEA T2000 Tribometre, tribolojiyi bir üst seviyeye taşır.

ŞIMDI, BAŞVURUNUZ HAKKINDA KONUŞALIM

3D Profilometri Kullanarak Pürüzlülük Haritalama Denetimi

PÜRÜZLÜLÜK HARITALAMA DENETIMI

3 BOYUTLU PROFILOMETRI KULLANARAK

Tarafından hazırlanmıştır

DUANJIE, PhD

GİRİŞ

Yüzey pürüzlülüğü ve dokusu, bir ürünün nihai kalitesini ve performansını etkileyen kritik faktörlerdir. Yüzey pürüzlülüğü, dokusu ve tutarlılığının tam olarak anlaşılması, en iyi işleme ve kontrol önlemlerinin seçilmesi için gereklidir. Kusurlu ürünleri zamanında tespit etmek ve üretim hattı koşullarını optimize etmek için ürün yüzeylerinin hızlı, ölçülebilir ve güvenilir hat içi denetimine ihtiyaç vardır.

HAT İÇİ YÜZEY DENETİMİ İÇİN 3 BOYUTLU TEMASSIZ PROFİLOMETRENİN ÖNEMİ

Ürünlerdeki yüzey kusurları malzeme işleme ve ürün imalatından kaynaklanır. Hat içi yüzey kalite denetimi, son ürünlerin en sıkı kalite kontrolünü sağlar. NANOVEA 3D Temassız Optik Profil Oluşturucular Bir numunenin pürüzlülüğünü temassız olarak belirlemek için benzersiz kapasiteye sahip Kromatik Işık teknolojisini kullanır. Çizgi sensörü, geniş bir yüzeyin 3 boyutlu profilinin yüksek hızda taranmasını sağlar. Analiz yazılımı tarafından gerçek zamanlı olarak hesaplanan pürüzlülük eşiği, hızlı ve güvenilir bir başarılı/başarısız aracı olarak hizmet eder.

ÖLÇÜM HEDEFI

Bu çalışmada, yüksek hızlı bir sensörle donatılmış NANOVEA ST400, NANOVEA'nın kapasitesini göstermek için kusurlu bir Teflon numunesinin yüzeyini incelemek için kullanılmıştır.

Temassız Profilometreler, bir üretim hattında hızlı ve güvenilir yüzey denetimi sağlar.

NANOVEA

ST400

SONUÇLAR & TARTIŞMA

3 Boyutlu Yüzey Analizi Pürüzlülük Standart Numune

Bir Pürüzlülük Standardının yüzeyi, ŞEKİL 1'de gösterildiği gibi 192 noktadan oluşan parlak bir çizgi oluşturan yüksek hızlı bir sensörle donatılmış bir NANOVEA ST400 kullanılarak taranmıştır. Bu 192 nokta numune yüzeyini aynı anda tarayarak tarama hızının önemli ölçüde artmasını sağlar.

ŞEKİL 2'de Pürüzlülük Standardı Numunesinin Yüzey Yüksekliği Haritası ve Pürüzlülük Dağılımı Haritasının sahte renkli görünümleri gösterilmektedir. ŞEKİL 2a'da Pürüzlülük Standardı, standart pürüzlülük bloklarının her birinde değişen renk gradyanıyla temsil edildiği üzere hafif eğimli bir yüzey sergilemektedir. ŞEKİL 2b'de, rengi bloklardaki pürüzlülüğü temsil eden farklı pürüzlülük bloklarında homojen pürüzlülük dağılımı gösterilmektedir.

ŞEKİL 3, Analiz Yazılımı tarafından farklı Pürüzlülük Eşiklerine dayalı olarak oluşturulan Başarılı/Başarısız Haritalarının örneklerini göstermektedir. Pürüzlülük blokları, yüzey pürüzlülükleri belirli bir eşik değerinin üzerinde olduğunda kırmızı renkle vurgulanır. Bu, kullanıcının bir numune yüzey kalitesinin kalitesini belirlemek için bir pürüzlülük eşiği ayarlaması için bir araç sağlar.

ŞEKİL 1: Pürüzlülük Standardı örneği üzerinde optik çizgi sensörü taraması

a. Yüzey Yükseklik Haritası:

b. Pürüzlülük Haritası:

ŞEKİL 2: Pürüzlülük Standart Numunesinin Yüzey Yüksekliği Haritası ve Pürüzlülük Dağılımı Haritasının yanlış renk görünümleri.

ŞEKİL 3: Pürüzlülük Eşiğine dayalı Başarılı/Başarısız Haritası.

Kusurlu Bir Teflon Numunesinin Yüzey Kontrolü

Teflon numune yüzeyinin Yüzey Yükseklik Haritası, Pürüzlülük Dağılım Haritası ve Geçer/Kalır Pürüzlülük Eşik Haritası ŞEKİL 4'te gösterilmektedir. Teflon Numunesi, Yüzey Yüksekliği Haritasında gösterildiği gibi numunenin sağ merkezinde bir sırt formuna sahiptir.

a. Yüzey Yükseklik Haritası:

ŞEKİL 4b'nin paletindeki farklı renkler yerel yüzeydeki pürüzlülük değerini temsil etmektedir. Pürüzlülük Haritası, Teflon numunesinin sağlam alanında homojen bir pürüzlülük sergilemektedir. Bununla birlikte, girintili halka ve aşınma izi şeklindeki kusurlar parlak renklerle vurgulanmıştır. Kullanıcı, ŞEKİL 4c'de gösterildiği gibi yüzey kusurlarını bulmak için kolayca bir Geçer/Kalır pürüzlülük eşiği ayarlayabilir. Böyle bir araç, kullanıcıların üretim hattındaki ürün yüzey kalitesini yerinde izlemelerine ve kusurlu ürünleri zamanında keşfetmelerine olanak tanır. Gerçek zamanlı pürüzlülük değeri, ürünler hat içi optik sensörden geçerken hesaplanır ve kaydedilir, bu da kalite kontrol için hızlı ama güvenilir bir araç olarak hizmet edebilir.

b. Pürüzlülük Haritası:

c. Geçer/Kalır Pürüzlülük Eşik Haritası:

ŞEKİL 4: Yüzey Yükseklik Haritası, Pürüzlülük Dağılım Haritası ve Teflon numune yüzeyinin Başarılı/Başarısız Pürüzlülük Eşik Haritası.

SONUÇ

Bu uygulamada, optik çizgi sensörü ile donatılmış NANOVEA ST400 3D Temassız Optik Profilleyicinin etkili ve verimli bir şekilde güvenilir bir kalite kontrol aracı olarak nasıl çalıştığını gösterdik.

Optik çizgi sensörü, numune yüzeyini aynı anda tarayan 192 noktadan oluşan parlak bir çizgi oluşturarak tarama hızını önemli ölçüde artırır. Ürünlerin yüzey pürüzlülüğünü yerinde izlemek için üretim hattına monte edilebilir. Pürüzlülük eşiği, ürünlerin yüzey kalitesini belirlemek için güvenilir bir kriter olarak çalışır ve kullanıcıların kusurlu ürünleri zamanında fark etmelerini sağlar.

Burada gösterilen veriler, analiz yazılımında bulunan hesaplamaların yalnızca bir kısmını temsil etmektedir. NANOVEA Profilometreler, Yarı İletken, Mikroelektronik, Güneş, Fiber Optik, Otomotiv, Havacılık ve Uzay, Metalurji, İşleme, Kaplama, İlaç, Biyomedikal, Çevre ve diğer birçok alanda hemen hemen her yüzeyi ölçer.

ŞIMDI, BAŞVURUNUZ HAKKINDA KONUŞALIM

Taşınabilir 3D Profilometre Kullanarak Kaynak Yüzeyi Denetimi

WELd yüzey denetimi

portati̇f 3 boyutlu profi̇lometre kullanimi

Tarafından hazırlanmıştır

CRAIG LEISING

GİRİŞ

Tipik olarak görsel inceleme ile yapılan belirli bir kaynağın aşırı hassasiyetle incelenmesi kritik hale gelebilir. Hassas analiz için spesifik ilgi alanları arasında, sonraki muayene prosedürlerinden bağımsız olarak yüzey çatlakları, gözeneklilik ve doldurulmamış kraterler bulunur. Boyut/şekil, hacim, pürüzlülük, boyut vb. gibi kaynak özelliklerinin tümü kritik değerlendirme için ölçülebilir.

KAYNAK YÜZEYİ DENETİMİNDE 3 BOYUTLU TEMASSIZ PROFİLOMETRENİN ÖNEMİ

NANOVEA, dokunma probları veya interferometri gibi diğer tekniklerin aksine 3D Temassız ProfilometreEksenel kromatizmi kullanarak neredeyse her yüzeyi ölçebilir, açık aşamalandırma nedeniyle numune boyutları büyük ölçüde değişebilir ve numune hazırlamaya gerek yoktur. Nanodan makroya kadar aralık, yüzey profili ölçümü sırasında numune yansımasından veya emiliminden sıfır etkiyle elde edilir, yüksek yüzey açılarını ölçme konusunda gelişmiş bir yeteneğe sahiptir ve sonuçların yazılımla manipülasyonu yoktur. Herhangi bir malzemeyi kolayca ölçün: şeffaf, opak, aynasal, dağınık, cilalı, pürüzlü vb. NANOVEA Taşınabilir Profilometrelerin 2D ve 2D yetenekleri, onları hem laboratuvarda hem de sahada tam kapsamlı kaynak yüzeyi muayenesi için ideal cihazlar haline getirir.

ÖLÇÜM HEDEFI

Bu uygulamada, NANOVEA JR25 Taşınabilir Profilleyici, bir kaynağın yüzey pürüzlülüğünü, şeklini ve hacmini ve ayrıca çevresindeki alanı ölçmek için kullanılır. Bu bilgiler, kaynağın ve kaynak işleminin kalitesini doğru bir şekilde araştırmak için kritik bilgiler sağlayabilir.

NANOVEA

JR25

TEST SONUÇLARI

Aşağıdaki görüntü, kaynağın ve çevresindeki alanın tam 3D görünümünü ve yalnızca kaynağın yüzey parametrelerini göstermektedir. 2D kesit profili aşağıda gösterilmiştir.

örneklem

Yukarıdaki 2D kesit profili 3D'den çıkarıldığında, kaynağın boyutsal bilgileri aşağıda hesaplanır. Aşağıda sadece kaynak için yüzey alanı ve malzeme hacmi hesaplanmıştır.

 DELİKZİRVE
YÜZEY1.01 mm214.0 mm2
HACİM8.799e-5 mm323,27 mm3
MAKSIMUM DERINLIK/YÜKSEKLIK0,0276 mm0,6195 mm
ORTALAMA DERINLIK/YÜKSEKLIK 0.004024 mm 0,2298 mm

SONUÇ

Bu uygulamada, NANOVEA 3D Temassız Profilleyicinin bir kaynağın ve çevresindeki yüzey alanının kritik özelliklerini nasıl hassas bir şekilde karakterize edebileceğini gösterdik. Pürüzlülük, boyutlar ve hacimden, kalite ve tekrarlanabilirlik için nicel bir yöntem belirlenebilir ve / veya daha fazla araştırılabilir. Bu uygulama notundaki örnek gibi örnek kaynaklar, kurum içi veya saha testleri için standart bir masa üstü veya taşınabilir NANOVEA Profilleyici ile kolayca analiz edilebilir

ŞIMDI, BAŞVURUNUZ HAKKINDA KONUŞALIM

3D Profilometri Kullanarak Fraktografi Analizi

FRAKTOGRAFİ ANALİZİ

3 BOYUTLU PROFILOMETRI KULLANARAK

Tarafından hazırlanmıştır

CRAIG LEISING

GİRİŞ

Fraktografi, kırık yüzeylerdeki özelliklerin incelenmesidir ve tarihsel olarak Mikroskop veya SEM aracılığıyla araştırılmıştır. Özelliğin boyutuna bağlı olarak yüzey analizi için mikroskop (makro özellikler) veya SEM (nano ve mikro özellikler) seçilir. Her ikisi de sonuçta kırılma mekanizması tipinin tanımlanmasına olanak sağlar. Etkili olmasına rağmen, Mikroskopun açık sınırlamaları vardır ve çoğu durumda SEM, atomik seviye analizi dışında, kırılma yüzeyi ölçümü için pratik değildir ve daha geniş kullanım kapasitesinden yoksundur. Optik ölçüm teknolojisindeki gelişmeler sayesinde NANOVEA 3D Temassız Profilometre makro ölçekli 2D ve 3D yüzey ölçümleri yoluyla nano sağlama yeteneğiyle artık tercih edilen cihaz olarak kabul ediliyor

KIRIK İNCELEMESİ İÇİN 3 BOYUTLU TEMASSIZ PROFİLOMETRENİN ÖNEMİ

SEM'in aksine, 3D Temassız Profilometre neredeyse her yüzeyi, numune boyutunu, minimum numune hazırlığı ile ölçebilir ve tüm bunlar bir SEM'e göre üstün dikey / yatay boyutlar sunar. Bir profilometre ile nano ile makro arasındaki özellikler, numune yansıtıcılığından sıfır etkilenerek tek bir ölçümde yakalanır. Her türlü malzemeyi kolayca ölçün: şeffaf, opak, speküler, difüzif, cilalı, pürüzlü vb. 3D Temassız Profilometre, SEM maliyetinin çok altında bir maliyetle yüzey kırılma çalışmalarını en üst düzeye çıkarmak için geniş ve kullanıcı dostu bir yetenek sağlar.

ÖLÇÜM HEDEFI

Bu uygulamada, NANOVEA ST400 bir çelik numunenin kırılmış yüzeyini ölçmek için kullanılmaktadır. Bu çalışmada, yüzeyin 3D alanını, 2D profil çıkarımını ve yüzey yön haritasını göstereceğiz.

NANOVEA

ST400

SONUÇLAR

ÜST YÜZEY

3B Yüzey Doku Yönü

İzotropi51.26%
Birinci Yön123.2º
İkinci Yön116.3º
Üçüncü Yön0.1725º

Yüzey Alanı, Hacim, Pürüzlülük ve diğerleri bu ekstraksiyondan otomatik olarak hesaplanabilir.

2D Profil Çıkarma

SONUÇLAR

YAN YÜZEY

3B Yüzey Doku Yönü

İzotropi15.55%
Birinci Yön0.1617º
İkinci Yön110.5º
Üçüncü Yön171.5º

Yüzey Alanı, Hacim, Pürüzlülük ve diğerleri bu ekstraksiyondan otomatik olarak hesaplanabilir.

2D Profil Çıkarma

SONUÇ

Bu uygulamada, NANOVEA ST400 3D Temassız Profilometrenin kırılmış bir yüzeyin tüm topografyasını (nano, mikro ve makro özellikler) nasıl hassas bir şekilde karakterize edebileceğini gösterdik. 3D alandan yüzey net bir şekilde tanımlanabilir ve alt alanlar veya profiller / kesitler hızlı bir şekilde çıkarılabilir ve sonsuz bir yüzey hesaplamaları listesi ile analiz edilebilir. Nanometre altı yüzey özellikleri, entegre bir AFM modülü ile daha fazla analiz edilebilir.

Ayrıca NANOVEA, Profilometre serisine, özellikle kırık yüzeyinin taşınamaz olduğu saha çalışmaları için kritik olan taşınabilir bir versiyon eklemiştir. Bu geniş yüzey ölçüm yetenekleri listesiyle, kırık yüzey analizi tek bir cihazla hiç bu kadar kolay ve kullanışlı olmamıştı.

ŞIMDI, BAŞVURUNUZ HAKKINDA KONUŞALIM

Tribometre Kullanarak Zımpara Kağıdı Aşınma Performansı

ZIMPARA KAĞIDI AŞINMA PERFORMANSI

TRIBOMETRE KULLANARAK

Tarafından hazırlanmıştır

DUANJIE LI, PhD

GİRİŞ

Zımpara kağıdı, bir kağıt veya bezin bir yüzüne yapıştırılmış aşındırıcı parçacıklardan oluşur. Parçacıklar için granat, silisyum karbür, alüminyum oksit ve elmas gibi çeşitli aşındırıcı malzemeler kullanılabilir. Zımpara kağıdı, ahşap, metal ve alçıpan üzerinde belirli yüzey kaplamaları oluşturmak için çeşitli endüstriyel sektörlerde yaygın olarak uygulanmaktadır. Genellikle el veya elektrikli aletlerle uygulanan yüksek basınçlı temas altında çalışırlar.

ZIMPARA KAĞIDININ AŞINMA PERFORMANSINI DEĞERLENDIRMENIN ÖNEMI

Zımpara kağıdının etkinliği genellikle farklı koşullar altındaki aşındırma performansına göre belirlenir. Kum boyutu, yani zımpara kağıdına gömülü aşındırıcı partiküllerin boyutu, zımparalanan malzemenin aşınma oranını ve çizik boyutunu belirler. Daha yüksek kum numaralı zımpara kağıtları daha küçük parçacıklara sahiptir, bu da daha düşük zımparalama hızları ve daha ince yüzey kalitesi sağlar. Aynı kum numarasına sahip ancak farklı malzemelerden yapılmış zımpara kağıtları, kuru veya ıslak koşullar altında benzer olmayan davranışlara sahip olabilir. Üretilen zımpara kağıdının istenen aşındırıcı davranışa sahip olduğundan emin olmak için güvenilir tribolojik değerlendirmelere ihtiyaç vardır. Bu değerlendirmeler, kullanıcıların hedef uygulama için en iyi adayı seçmek amacıyla farklı zımpara kağıdı türlerinin aşınma davranışlarını kontrollü ve izlenen bir şekilde niceliksel olarak karşılaştırmasına olanak tanır.

ÖLÇÜM HEDEFI

Bu çalışmada, NANOVEA Tribometre'nin kuru ve ıslak koşullar altında çeşitli zımpara kağıdı örneklerinin aşınma performansını nicel olarak değerlendirme yeteneğini sergiliyoruz.

NANOVEA

T2000

TEST PROSEDÜRLERI

İki tip zımpara kağıdının sürtünme katsayısı (COF) ve aşınma performansı NANOVEA T100 Tribometre ile değerlendirildi. Karşı malzeme olarak 440 paslanmaz çelik bilya kullanıldı. Bilye aşınma izleri, NANOVEA kullanılarak her aşınma testinden sonra incelendi. 3D Temassız Optik Profil Oluşturucu Hassas hacim kaybı ölçümleri sağlamak için.

Karşılaştırmalı bir çalışma oluşturmak için karşı malzeme olarak 440 paslanmaz çelik bilyenin seçildiğini, ancak farklı bir uygulama koşulunu simüle etmek için herhangi bir katı malzemenin ikame edilebileceğini lütfen unutmayın.

TEST SONUÇLARI VE TARTIŞMA

ŞEKİL 1'de kuru ve ıslak ortam koşullarında Zımpara Kağıdı 1 ve 2'nin COF karşılaştırması gösterilmektedir. Zımpara kağıdı 1, kuru koşullar altında, testin başında 0,4'lük bir COF göstermekte ve bu değer giderek azalarak 0,3'te sabitlenmektedir. Islak koşullar altında, bu numune 0,27'lik daha düşük bir ortalama COF sergilemektedir. Buna karşılık, Örnek 2'nin COF sonuçları kuru COF değerinin 0,27 ve ıslak COF değerinin ~ 0,37 olduğunu göstermektedir. 

Lütfen tüm COF grafikleri için verilerdeki salınımın, bilyenin pürüzlü zımpara kağıdı yüzeylerine karşı kayma hareketinden kaynaklanan titreşimlerden kaynaklandığını unutmayın.

ŞEKİL 1: Aşınma testleri sırasında COF'un evrimi.

ŞEKİL 2 aşınma izi analizinin sonuçlarını özetlemektedir. Aşınma izleri bir optik mikroskop ve bir NANOVEA 3D Temassız Optik Profilleyici kullanılarak ölçülmüştür. ŞEKİL 3 ve ŞEKİL 4, Zımpara Kağıdı 1 ve 2 (ıslak ve kuru koşullar) üzerindeki aşınma testleri sonrasında aşınmış SS440 bilyelerin aşınma izlerini karşılaştırmaktadır. ŞEKİL 4'te gösterildiği gibi, NANOVEA Optik Profilleyici dört bilyenin yüzey topografisini ve ilgili aşınma izlerini hassas bir şekilde yakalar ve daha sonra hacim kaybını ve aşınma oranını hesaplamak için NANOVEA Mountains Gelişmiş Analiz yazılımı ile işlenir. Bilyenin mikroskop ve profil görüntüsünde, Zımpara Kağıdı 1 (kuru) testi için kullanılan bilyenin 0,313 hacim kaybı ile diğerlerine kıyasla daha büyük bir düzleştirilmiş aşınma izi sergilediği gözlemlenebilir. mm3. Buna karşılık, Zımpara Kağıdı 1 (ıslak) için hacim kaybı 0,131 mm3. Zımpara Kağıdı 2 (kuru) için hacim kaybı 0,163'tür mm3 ve Zımpara Kağıdı 2 (ıslak) için hacim kaybı 0,237'ye yükselmiştir mm3.

Ayrıca, COF'nin zımpara kağıtlarının aşınma performansında önemli bir rol oynadığını gözlemlemek ilginçtir. Zımpara kağıdı 1 kuru durumda daha yüksek COF sergilemiş ve testte kullanılan SS440 bilye için daha yüksek bir aşınma oranına yol açmıştır. Buna karşılık, Zımpara Kağıdı 2'nin ıslak koşuldaki daha yüksek COF'si daha yüksek bir aşınma oranıyla sonuçlanmıştır. Ölçümlerden sonra zımpara kağıtlarının aşınma izleri ŞEKİL 5'te gösterilmektedir.

Zımpara Kağıtları 1 ve 2'nin her ikisi de kuru ve ıslak ortamlarda çalıştığını iddia ediyor. Ancak kuru ve ıslak koşullarda önemli ölçüde farklı aşınma performansı sergilediler. NANOVEA tribometreler tekrarlanabilir aşınma değerlendirmeleri sağlayan, iyi kontrol edilen, ölçülebilir ve güvenilir aşınma değerlendirme yetenekleri sağlar. Dahası, yerinde COF ölçümü kapasitesi, kullanıcıların bir aşınma sürecinin farklı aşamalarını COF'nin gelişimi ile ilişkilendirmesine olanak tanır; bu, aşınma mekanizmasının ve zımpara kağıdının tribolojik özelliklerinin temel anlayışının geliştirilmesinde kritik öneme sahiptir.

ŞEKİL 2: Bilyaların aşınma izi hacmi ve farklı koşullar altında ortalama COF.

ŞEKİL 3: Testlerden sonra topların yara izleri.

ŞEKİL 4: Bilyelerdeki aşınma izlerinin 3D morfolojisi.

ŞEKİL 5: Farklı koşullar altında zımpara kağıtları üzerindeki aşınma izleri.

SONUÇ

Bu çalışmada, aynı kum numarasına sahip iki tip zımpara kağıdının aşınma performansı kuru ve ıslak koşullar altında değerlendirilmiştir. Zımpara kağıdının servis koşulları, çalışma performansının etkinliğinde kritik bir rol oynamaktadır. Zımpara kağıdı 1 kuru koşullar altında önemli ölçüde daha iyi aşınma davranışına sahipken, Zımpara kağıdı 2 ıslak koşullar altında daha iyi performans göstermiştir. Zımparalama işlemi sırasındaki sürtünme, aşınma performansını değerlendirirken göz önünde bulundurulması gereken önemli bir faktördür. NANOVEA Optik Profilleyici, bilye üzerindeki aşınma izleri gibi herhangi bir yüzeyin 3D morfolojisini hassas bir şekilde ölçerek bu çalışmada zımpara kağıdının aşınma performansı hakkında güvenilir bir değerlendirme yapılmasını sağlar. NANOVEA Tribometre, bir aşınma testi sırasında sürtünme katsayısını yerinde ölçerek bir aşınma sürecinin farklı aşamaları hakkında fikir verir. Ayrıca, ISO ve ASTM uyumlu rotatif ve lineer modları kullanarak tekrarlanabilir aşınma ve sürtünme testleri sunar ve isteğe bağlı yüksek sıcaklık aşınma ve yağlama modülleri önceden entegre edilmiş tek bir sistemde mevcuttur. Bu eşsiz ürün yelpazesi, kullanıcıların yüksek stres, aşınma ve yüksek sıcaklık vb. dahil olmak üzere bilyalı rulmanların farklı zorlu çalışma ortamlarını simüle etmelerine olanak tanır. Ayrıca, yüksek yükler altında üstün aşınma dirençli malzemelerin tribolojik davranışlarını nicel olarak değerlendirmek için ideal bir araç sağlar.

ŞIMDI, BAŞVURUNUZ HAKKINDA KONUŞALIM

3D Profilometri Kullanılarak İşlenmiş Deri Yüzey Finişi

IŞLENMIŞ DERI

3D PROFİLOMETRİ İLE YÜZEY KALİTESİ

Tarafından hazırlanmıştır

CRAIG LEISING

GİRİŞ

Bir deri postunun tabaklama işlemi tamamlandıktan sonra, deri yüzeyi çeşitli görünüm ve dokunuşlar için çeşitli son işlemlerden geçebilir. Bu mekanik işlemler germe, parlatma, zımparalama, kabartma, kaplama vb. içerebilir. Derinin nihai kullanımına bağlı olarak bazıları daha hassas, kontrollü ve tekrarlanabilir bir işlem gerektirebilir.

PROFİLOMETRİ DENETİMİNİN ÖNEMİ AR-GE VE KALİTE KONTROL İÇİN

Görsel denetim yöntemlerinin büyük çeşitliliği ve güvenilmezliği nedeniyle, mikro ve nano ölçekli özellikleri doğru bir şekilde ölçebilen araçlar deri finisaj işlemlerini iyileştirebilir. Derinin yüzey finisajının ölçülebilir bir şekilde anlaşılması, optimum finisaj sonuçları elde etmek için veriye dayalı yüzey işleme seçiminin iyileştirilmesine yol açabilir. NANOVEA 3D Temassız Profilometreler Bitmiş deri yüzeylerini ölçmek için kromatik konfokal teknolojisini kullanır ve piyasadaki en yüksek tekrarlanabilirlik ve doğruluğu sunar. Diğer tekniklerin prob teması, yüzey varyasyonu, açı, emilim veya yansıtma nedeniyle güvenilir veri sağlayamadığı durumlarda NANOVEA Profilometreler başarılı olur.

ÖLÇÜM HEDEFI

Bu uygulamada NANOVEA ST400, iki farklı ancak yakın işlenmiş deri numunesinin yüzey kalitesini ölçmek ve karşılaştırmak için kullanılmaktadır. Yüzey profilinden çeşitli yüzey parametreleri otomatik olarak hesaplanır.

Burada karşılaştırmalı değerlendirme için yüzey pürüzlülüğü, çukur derinliği, çukur aralığı ve çukur çapına odaklanacağız.

NANOVEA

ST400

SONUÇLAR: ÖRNEK 1

ISO 25178

YÜKSEKLIK PARAMETRELERI

DİĞER 3D PARAMETRELER

SONUÇLAR: ÖRNEKLEM 2

ISO 25178

YÜKSEKLIK PARAMETRELERI

DİĞER 3D PARAMETRELER

DERINLIK KARŞILAŞTIRMALI

Her numune için derinlik dağılımı.
'de çok sayıda derin çukur gözlenmiştir.
ÖRNEK 1.

KARŞILAŞTIRMALI PERDE

üzerindeki çukurlar arasındaki aralık ÖRNEK 1 biraz daha küçüktür
daha fazla
ÖRNEK 2ancak her ikisi de benzer bir dağılıma sahiptir

 KARŞILAŞTIRMALI ORTALAMA ÇAP

Ortalama çukur çaplarının benzer dağılımları,
ile
ÖRNEK 1 ortalama olarak biraz daha küçük ortalama çaplar göstermektedir.

SONUÇ

Bu uygulamada, NANOVEA ST400 3D Profilometrenin işlenmiş derinin yüzey kalitesini nasıl hassas bir şekilde karakterize edebileceğini gösterdik. Bu çalışmada, yüzey pürüzlülüğünü, çukur derinliğini, çukur aralığını ve çukur çapını ölçebilme kabiliyetine sahip olmak, iki numunenin finisajı ve kalitesi arasındaki görsel inceleme ile belirgin olmayabilecek farklılıkları ölçmemizi sağladı.

Genel olarak, ÖRNEK 1 ve ÖRNEK 2 arasındaki 3D taramaların görünümünde gözle görülür bir fark yoktu. Bununla birlikte, istatistiksel analizde iki numune arasında net bir ayrım vardır. NUMUNE 1, NUMUNE 2'ye kıyasla daha küçük çaplara, daha büyük derinliklere ve daha küçük çukur-çukur aralığına sahip daha yüksek miktarda çukur içermektedir.

Lütfen ek çalışmaların mevcut olduğunu unutmayın. Özel ilgi alanları, entegre bir AFM veya Mikroskop modülü ile daha fazla analiz edilebilir. NANOVEA 3D Profilometre hızları, yüksek hızlı denetim ihtiyaçlarını karşılamak üzere laboratuvar veya araştırma için 20 mm/s ila 1 m/s arasında değişir; özel boyutlandırma, hızlar, tarama yetenekleri, Sınıf 1 temiz oda uyumluluğu, indeksleme konveyörü veya hat içi veya çevrimiçi entegrasyon için üretilebilir.

ŞIMDI, BAŞVURUNUZ HAKKINDA KONUŞALIM

Piston Aşınma Testi

Piston Aşınma Testi

Tribometre Kullanımı

Tarafından hazırlanmıştır

FRANK LIU

GİRİŞ

Sürtünme kaybı, bir dizel motor için yakıttaki toplam enerjinin yaklaşık 10%'sini oluşturur[1]. Sürtünme kaybının 40-55%'si güç silindiri sisteminden kaynaklanmaktadır. Sürtünmeden kaynaklanan enerji kaybı, güç silindiri sisteminde meydana gelen tribolojik etkileşimlerin daha iyi anlaşılmasıyla azaltılabilir.

Güç silindiri sistemindeki sürtünme kaybının önemli bir kısmı piston eteği ile silindir gömleği arasındaki temastan kaynaklanır. Piston eteği, yağlayıcı ve silindir arayüzleri arasındaki etkileşim, gerçek hayattaki bir motorda kuvvet, sıcaklık ve hızdaki sürekli değişiklikler nedeniyle oldukça karmaşıktır. Her bir faktörü optimize etmek, optimum motor performansı elde etmenin anahtarıdır. Bu çalışma, piston eteği-yağlayıcı-silindir gömleği (P-L-C) arayüzlerinde sürtünme kuvvetlerine ve aşınmaya neden olan mekanizmaların çoğaltılmasına odaklanacaktır.

 Güç silindirleri sisteminin şeması ve piston eteği-yağlayıcı-silindir gömleği arayüzleri.

[1] Bai, Dongfang. İçten yanmalı motorlarda piston eteği yağlamasının modellenmesi. Doktora tezi. MIT, 2012

PISTONLARIN TRIBOMETRE ILE TEST EDILMESININ ÖNEMI

Motor yağı, uygulaması için iyi tasarlanmış bir yağlayıcıdır. Baz yağa ek olarak, performansını artırmak için deterjanlar, dağıtıcılar, viskozite artırıcı (VI), aşınma/sürtünme önleyici maddeler ve korozyon önleyiciler gibi katkı maddeleri eklenir. Bu katkı maddeleri, yağın farklı çalışma koşulları altında nasıl davrandığını etkiler. Yağın davranışı P-L-C arayüzlerini etkiler ve metal-metal temasından kaynaklanan önemli aşınma veya hidrodinamik yağlama (çok az aşınma) olup olmadığını belirler.

Alanı dış değişkenlerden izole etmeden P-L-C arayüzlerini anlamak zordur. Olayı gerçek hayattaki uygulamasını temsil eden koşullarla simüle etmek daha pratiktir. Bu NANOVEA Tribometre bunun için idealdir. Çoklu kuvvet sensörleri, derinlik sensörü, damla damla yağlama modülü ve doğrusal ileri geri hareket kademesi ile donatılmış olan NANOVEA T2000, bir motor bloğunda meydana gelen olayları yakından taklit edebilir ve P-L-C arayüzlerini daha iyi anlamak için değerli veriler elde edebilir.

NANOVEA T2000 Tribometre üzerindeki Sıvı Modülü

Damla damla modülü bu çalışma için çok önemlidir. Pistonlar çok hızlı hareket edebildiğinden (3000 rpm'nin üzerinde), numuneyi daldırarak ince bir yağlayıcı filmi oluşturmak zordur. Bu sorunu çözmek için damla damla modülü, piston etek yüzeyine sabit miktarda yağlayıcıyı tutarlı bir şekilde uygulayabilmektedir.

Taze yağlayıcı uygulaması, yerinden oynamış aşınma kirleticilerinin yağlayıcının özelliklerini etkilemesi endişesini de ortadan kaldırır.

NANOVEA T2000

Yüksek Yük Tribometresi

ÖLÇÜM HEDEFI

Bu raporda piston eteği-yağlayıcı-silindir gömleği arayüzleri incelenecektir. Arayüzler, damla damla yağlayıcı modülü ile doğrusal bir ileri geri aşınma testi gerçekleştirilerek çoğaltılacaktır.

Yağlayıcı, soğuk başlatma ve optimum çalışma koşullarını karşılaştırmak için oda sıcaklığında ve ısıtılmış koşullarda uygulanacaktır. Arayüzlerin gerçek hayattaki uygulamalarda nasıl davrandığını daha iyi anlamak için COF ve aşınma oranı gözlemlenecektir.

TEST PARAMETRELERI

pistonlar üzerinde triboloji testi için

YÜKLE ............................ 100 N

TEST SÜRESİ ............................ 30 dakika

HIZ ............................ 2000 rpm

AMPLİTÜD ............................ 10 mm

TOPLAM MESAFE ............................ 1200 m

ETEK KAPLAMASI ............................ Moly-grafit

PİM MALZEMESİ ............................ Alüminyum Alaşım 5052

PİM ÇAPI ............................ 10 mm

YAĞLAYICI ............................ Motor Yağı (10W-30)

YAKLAŞIK. AKIŞ ORANI ............................ 60 mL/dak

SICAKLIK ............................ Oda sıcaklığı ve 90°C

DOĞRUSAL PISTONLU TEST SONUÇLARI

Bu deneyde karşı malzeme olarak A5052 kullanılmıştır. Motor blokları genellikle A356 gibi dökme alüminyumdan yapılırken, A5052 bu simülatif test için A356'ya benzer mekanik özelliklere sahiptir [2].

Test koşulları altında, önemli ölçüde aşınma
Oda sıcaklığında piston eteğinde gözlemlenen
90°C ile karşılaştırıldığında. Numunelerde görülen derin çizikler, statik malzeme ile piston eteği arasındaki temasın test boyunca sık sık meydana geldiğini göstermektedir. Oda sıcaklığındaki yüksek viskozite, yağın ara yüzeylerdeki boşlukları tamamen doldurmasını ve metal-metal teması oluşturmasını engelliyor olabilir. Daha yüksek sıcaklıklarda yağ incelir ve pim ile piston arasında akabilir. Sonuç olarak, yüksek sıcaklıkta önemli ölçüde daha az aşınma gözlenir. ŞEKİL 5 aşınma izinin bir tarafının diğer tarafa göre önemli ölçüde daha az aşındığını göstermektedir. Bu büyük olasılıkla yağ çıkışının konumundan kaynaklanmaktadır. Yağlayıcı film kalınlığı bir tarafta diğerine göre daha kalındı ve bu da eşit olmayan aşınmaya neden oldu.

 

 

[2] "5052 Alüminyum vs 356.0 Alüminyum." MakeItFrom.com, makeitfrom.com/compare/5052-O-Aluminum/A356.0-SG70B-A13560-Cast-Aluminum

Doğrusal pistonlu triboloji testlerinin COF'si yüksek ve düşük geçiş olarak ikiye ayrılabilir. Yüksek geçiş, numunenin ileri veya pozitif yönde hareket ettiğini, düşük geçiş ise numunenin ters veya negatif yönde hareket ettiğini ifade eder. RT yağı için ortalama COF'nin her iki yönde de 0,1'in altında olduğu gözlemlenmiştir. Geçişler arasındaki ortalama COF 0,072 ve 0,080 idi. 90°C yağın ortalama COF değerinin geçişler arasında farklı olduğu görülmüştür. Ortalama COF değerleri 0,167 ve 0,09 olarak gözlemlenmiştir. COF'deki fark, yağın pimin sadece bir tarafını düzgün bir şekilde ıslatabildiğine dair ek bir kanıt sunmaktadır. Hidrodinamik yağlama nedeniyle pim ve piston eteği arasında kalın bir film oluştuğunda yüksek COF elde edilmiştir. Karışık yağlama meydana geldiğinde diğer yönde daha düşük COF gözlemlenmiştir. Hidrodinamik yağlama ve karışık yağlama hakkında daha fazla bilgi için lütfen aşağıdaki uygulama notumuzu ziyaret edin Stribeck Eğrileri.

Tablo 1: Pistonlar üzerinde yağlanmış aşınma testi sonuçları.

ŞEKİL 1: Oda sıcaklığında yağ aşınma testi için COF grafikleri A ham profil B yüksek geçiş C düşük geçiş.

ŞEKİL 2: 90°C aşınma yağı testi için COF grafikleri A ham profil B yüksek geçiş C düşük geçiş.

ŞEKİL 3: RT motor yağı aşınma testinden aşınma izinin optik görüntüsü.

ŞEKİL 4: RT motor yağı aşınma testinden elde edilen aşınma izinin delik analizi hacmi.

ŞEKİL 5: RT motor yağı aşınma testinden aşınma izinin profilometri taraması.

ŞEKİL 6: 90°C motor yağı aşınma testinden elde edilen aşınma izinin optik görüntüsü

ŞEKİL 7: 90°C motor yağı aşınma testinden elde edilen aşınma izinin delik analizi hacmi.

ŞEKİL 8: 90°C motor yağı aşınma testinden elde edilen aşınma izinin profilometri taraması.

SONUÇ

Yağlanmış doğrusal ileri geri aşınma testi, bir pistonda meydana gelen olayları simüle etmek için bir piston üzerinde gerçekleştirilmiştir.
gerçek hayattaki operasyonel motor. Piston eteği-yağlayıcı-silindir gömleği arayüzleri bir motorun çalışması için çok önemlidir. Arayüzdeki yağlayıcı kalınlığı, piston eteği ve silindir gömleği arasındaki sürtünme veya aşınmadan kaynaklanan enerji kaybından sorumludur. Motoru optimize etmek için film kalınlığı, piston eteği ve silindir gömleğinin temas etmesine izin vermeden mümkün olduğunca ince olmalıdır. Ancak buradaki zorluk, sıcaklık, hız ve kuvvet değişikliklerinin P-L-C arayüzlerini nasıl etkileyeceğidir.

Geniş yükleme aralığı (2000 N'a kadar) ve hızı (15000 rpm'ye kadar) ile NANOVEA T2000 tribometre, bir motorda olası farklı koşulları simüle edebilmektedir. Bu konuda gelecekte yapılacak olası çalışmalar arasında P-L-C arayüzlerinin farklı sabit yük, salınımlı yük, yağlayıcı sıcaklığı, hız ve yağlayıcı uygulama yöntemi altında nasıl davranacağı yer almaktadır. Bu parametreler NANOVEA T2000 tribometre ile kolayca ayarlanarak piston eteği-yağlayıcı-silindir gömleği arayüzlerinin mekanizmaları hakkında tam bir anlayış sağlanabilir.

ŞIMDI, BAŞVURUNUZ HAKKINDA KONUŞALIM

Strafor Yüzey Sınır Ölçümü Profilometri

Yüzey Sınır Ölçümü

3D Profilometri Kullanarak Yüzey Sınır Ölçümü

Daha fazla bilgi edinin

YÜZEY SINIR ÖLÇÜMÜ

3 BOYUTLU PROFILOMETRI KULLANARAK

Tarafından hazırlanmıştır

Craig Leising

GİRİŞ

Yüzey özelliklerinin, desenlerin, şekillerin vb. arayüzünün oryantasyon için değerlendirildiği çalışmalarda, ölçüm profilinin tamamı üzerinde ilgilenilen alanları hızlı bir şekilde belirlemek faydalı olacaktır. Kullanıcı, bir yüzeyi önemli alanlara bölerek, incelenen tüm yüzey profilindeki işlevsel rollerini anlamak için sınırları, tepeleri, çukurları, alanları, hacimleri ve diğerlerini hızlı bir şekilde değerlendirebilir. Örneğin, metallerin tane sınırı görüntülemesinde olduğu gibi, analizin önemi birçok yapının arayüzü ve bunların genel yönelimidir. Her bir ilgi alanının anlaşılmasıyla, genel alan içindeki kusurlar ve / veya anormallikler tanımlanabilir. Tane sınırı görüntüleme tipik olarak Profilometre kapasitesini aşan bir aralıkta çalışılmasına ve yalnızca 2D görüntü analizi olmasına rağmen, burada gösterilecek olan kavramı 3D yüzey ölçüm avantajlarıyla birlikte daha büyük ölçekte göstermek için yararlı bir referanstır.

YÜZEY AYIRMA ÇALIŞMASI İÇİN 3 BOYUTLU TEMASSIZ PROFİLOMETRENİN ÖNEMİ

Temaslı problar veya interferometri gibi diğer tekniklerin aksine, 3D Temassız ProfilometreEksenel kromatizmi kullanarak neredeyse her yüzeyi ölçebilir, açık aşamalandırma nedeniyle numune boyutları büyük ölçüde değişebilir ve numune hazırlamaya gerek yoktur. Nanodan makroya kadar aralık, yüzey profili ölçümü sırasında numune yansıtma veya absorpsiyondan sıfır etkiyle elde edilir, yüksek yüzey açılarını ölçme konusunda gelişmiş bir yeteneğe sahiptir ve sonuçların yazılımla manipülasyonu gerekmez. Herhangi bir malzemeyi kolayca ölçün: şeffaf, opak, aynasal, dağınık, cilalı, pürüzlü vb. Temassız Profilometre tekniği, yüzey sınır analizine ihtiyaç duyulduğunda yüzey çalışmalarını en üst düzeye çıkarmak için ideal, geniş ve kullanıcı dostu bir yetenek sağlar; kombine 2D ve 3D yeteneğinin avantajlarıyla birlikte.

ÖLÇÜM HEDEFI

Bu uygulamada straforun yüzey alanını ölçmek için Nanovea ST400 Profilometre kullanılmıştır. Sınırlar, NANOVEA ST400 kullanılarak eş zamanlı olarak elde edilen topografya ile birlikte yansıyan bir yoğunluk dosyası birleştirilerek oluşturulmuştur. Bu veriler daha sonra her bir strafor "tanesinin" farklı şekil ve boyut bilgilerini hesaplamak için kullanılmıştır.

NANOVEA

ST400

BULGULAR VE TARTIŞMA: 2B Yüzey Sınır Ölçümü

Tane sınırlarını net bir şekilde tanımlamak için yansıyan yoğunluk görüntüsü (sağ altta) ile maskelenmiş topografi görüntüsü (sol altta). 565µm çapın altındaki tüm taneler filtre uygulanarak göz ardı edilmiştir.

Toplam tahıl sayısı: 167
Tahıllar tarafından işgal edilen toplam projeksiyon alanı: 166,917 mm² (64,5962 %)
Sınırlar tarafından işgal edilen toplam öngörülen alan: (35.4038 %)
Tane yoğunluğu: 0,646285 tane / mm2

Alan = 0,999500 mm² +/- 0,491846 mm²
Çevre = 9114,15 µm +/- 4570,38 µm
Eşdeğer çap = 1098,61 µm +/- 256,235 µm
Ortalama çap = 945.373 µm +/- 248.344 µm
Min çap = 675.898 µm +/- 246.850 µm
Maksimum çap = 1312,43 µm +/- 295,258 µm

BULGULAR VE TARTIŞMA: 3D Yüzey Sınır Ölçümü

Elde edilen 3D topografi verileri kullanılarak her bir tanenin hacmi, yüksekliği, tepe noktası, en-boy oranı ve genel şekil bilgileri analiz edilebilmektedir. Kaplanan toplam 3D alan: 2.525mm3

SONUÇ

Bu uygulamada, NANOVEA 3D Temassız Profilometrenin strafor yüzeyini nasıl hassas bir şekilde karakterize edebileceğini gösterdik. İstatistiksel bilgiler, ilgilenilen yüzeyin tamamında veya ister tepe ister çukur olsun, tek tek taneler üzerinde elde edilebilir. Bu örnekte, kullanıcı tarafından tanımlanan boyuttan daha büyük tüm taneler alan, çevre, çap ve yüksekliği göstermek için kullanılmıştır. Burada gösterilen özellikler, biyo medikalden mikro işleme uygulamalarına ve diğer birçok uygulamaya kadar doğal ve önceden imal edilmiş yüzeylerin araştırılması ve kalite kontrolü için kritik öneme sahip olabilir. 

ŞIMDI, BAŞVURUNUZ HAKKINDA KONUŞALIM

NANOVEA ile Profilometre Kullanarak Kontur Ölçümü

Kauçuk Sırt Kontur Ölçümü

Kauçuk Sırt Kontur Ölçümü

Daha Fazla Bilgi

 

 

 

 

 

 

 

 

 

 

 

 

 

KAUÇUK SIRT KONTUR ÖLÇÜMÜ

3D OPTIK PROFILLEYICI KULLANARAK

Kauçuk Sırt Kontur Ölçümü - NANOVEA Profiler

Tarafından hazırlanmıştır

ANDREA HERRMANN

GİRİŞ

Tüm malzemeler gibi, kauçuğun sürtünme katsayısı da aşağıdakilerle ilişkilidir kısmen yüzey pürüzlülüğüne bağlıdır. Araç lastiği uygulamalarında yol ile çekiş çok önemlidir. Bunda hem yüzey pürüzlülüğü hem de lastiğin dişleri rol oynar. Bu çalışmada, lastik yüzeyinin ve sırtının pürüzlülüğü ve boyutları analiz edilmiştir.

* ÖRNEK

ÖNEM

3 BOYUTLU TEMASSIZ PROFILOMETRI

KAUÇUK ÇALIŞMALARI IÇIN

Dokunma probları veya interferometri gibi diğer tekniklerin aksine, NANOVEA'nın 3D Temassız Optik Profil Oluşturucular neredeyse her yüzeyi ölçmek için eksenel kromatizmi kullanın. 

Profiler sisteminin açık evrelemesi çok çeşitli numune boyutlarına izin verir ve sıfır numune hazırlığı gerektirir. Nano ila makro aralıktaki özellikler, numune yansıtıcılığı veya emiliminden sıfır etkilenerek tek bir tarama sırasında tespit edilebilir. Ayrıca bu profilleyiciler, sonuçların yazılımla manipüle edilmesini gerektirmeden yüksek yüzey açılarını ölçmek için gelişmiş bir yeteneğe sahiptir.

Her türlü malzemeyi kolayca ölçün: şeffaf, opak, speküler, difüzif, cilalı, pürüzlü vb. NANOVEA 3D Temassız Profilleyicilerin ölçüm tekniği, birleşik 2D ve 3D özelliğinin avantajlarıyla birlikte yüzey çalışmalarını en üst düzeye çıkarmak için ideal, geniş ve kullanıcı dostu bir yetenek sağlar.

ÖLÇÜM HEDEFI

Bu uygulamada, NANOVEA ST400'ü sergiliyoruz, 3D Temassız Optik Profilleyici ölçümü kauçuk bir lastiğin yüzeyi ve dişleri.

Temsil edecek kadar büyük bir örnek yüzey alanı tüm lastik yüzeyi rastgele seçilmiştir Bu çalışma için. 

Kauçuğun özelliklerini ölçmek için aşağıdakileri kullandık NANOVEA Ultra 3D analiz yazılımı ile kontur boyutlarını, derinliğini ölçün, yüzeyin pürüzlülüğü ve gelişmiş alanı.

NANOVEA

ST400

ANALİZ: LASTİK DİŞİ

Basamakların 3D Görünümü ve Yanlış Renk Görünümü, 3D yüzey tasarımlarını haritalamanın değerini göstermektedir. Kullanıcılara, basamakların boyutunu ve şeklini farklı açılardan doğrudan gözlemlemek için basit bir araç sağlar. Gelişmiş Kontur Analizi ve Basamak Yüksekliği Analizi, örnek şekillerin ve tasarımların hassas boyutlarını ölçmek için son derece güçlü araçlardır

GELİŞMİŞ KONTUR ANALİZİ

BASAMAK YÜKSEKLİĞİ ANALİZİ

ANALİZ: KAUÇUK YÜZEY

Kauçuk yüzey, aşağıdaki şekillerde örnek olarak gösterildiği gibi yerleşik yazılım araçları kullanılarak çeşitli şekillerde ölçülebilir. Yüzey pürüzlülüğünün 2,688 μm olduğu ve geliştirilen alan ile öngörülen alanın 9,410 mm² ile 8,997 mm² olduğu gözlemlenebilir. Bu bilgiler, yüzey kalitesi ile farklı kauçuk formülasyonlarının ve hatta farklı yüzey aşınma derecelerine sahip kauçuğun çekişi arasındaki ilişkiyi incelememize olanak tanır.

SONUÇ

Bu uygulamada, NANOVEA'nın nasıl kullanıldığını gösterdik 3D Temassız Optik Profilleyici, kauçuğun yüzey pürüzlülüğünü ve sırt boyutlarını hassas bir şekilde karakterize edebilir.

Veriler 2,69 µm'lik bir yüzey pürüzlülüğü ve 9 mm²'lik bir projeksiyon alanı ile 9,41 mm²'lik bir gelişmiş alan göstermektedir. Kauçuk sırtların çeşitli boyutları ve yarıçapları ölçülmüştür.

Bu çalışmada sunulan bilgiler, farklı sırt tasarımlarına, formülasyonlara veya farklı aşınma derecelerine sahip kauçuk lastiklerin performansını karşılaştırmak için kullanılabilir. Burada gösterilen veriler, Türkiye'deki verilerin sadece bir kısmını temsil etmektedir. Ultra 3D analiz yazılımında bulunan hesaplamalar.

ŞIMDI, BAŞVURUNUZ HAKKINDA KONUŞALIM

3D Optik Profilleyici Kullanarak Balık Pulu Yüzey Analizi

3D Optik Profilleyici Kullanarak Balık Pulu Yüzey Analizi

Daha fazla bilgi edinin

BALIK PULU YÜZEY ANALIZI

3D OPTİK PROFİLLEYİCİ kullanarak

Balık Pulu profilometresi

Tarafından hazırlanmıştır

Andrea Novitsky

GİRİŞ

Balık pulunun morfolojisi, desenleri ve diğer özellikleri NANOVEA kullanılarak incelenir 3D Temassız Optik Profil Oluşturucu. Bu biyolojik numunenin hassas doğası ve çok küçük ve yüksek açılı oyukları, profil oluşturucunun temassız tekniğinin önemini de vurgulamaktadır. Ölçekteki oluklara circuli denir ve balığın yaşını tahmin etmek için incelenebilir ve hatta bir ağacın halkalarına benzer şekilde farklı büyüme hızlarının olduğu dönemleri ayırt etmek için incelenebilir. Bu, aşırı avlanmayı önlemek amacıyla yabani balık popülasyonlarının yönetimi açısından çok önemli bir bilgidir.

BİYOLOJİK ÇALIŞMALAR İÇİN 3D Temassız Profilometrinin Önemi

Dokunma probları veya interferometri gibi diğer tekniklerin aksine, eksenel kromatizma kullanan 3D Temassız Optik Profilleyici neredeyse her yüzeyi ölçebilir. Açık evreleme sayesinde numune boyutları büyük ölçüde değişebilir ve numune hazırlığı gerekmez. Nano ila makro aralıktaki özellikler, numune yansıtıcılığı veya emiliminden sıfır etkilenen bir yüzey profili ölçümü sırasında elde edilir. Cihaz, sonuçlarda yazılım manipülasyonu olmadan yüksek yüzey açılarını ölçmek için gelişmiş bir yetenek sağlar. Şeffaf, opak, speküler, difüzif, cilalı veya pürüzlü olsun, her türlü malzeme kolayca ölçülebilir. Bu teknik, birleşik 2D ve 3D özelliklerinin avantajlarının yanı sıra yüzey çalışmalarını en üst düzeye çıkarmak için ideal, geniş ve kullanıcı dostu bir yetenek sağlar.

ÖLÇÜM HEDEFI

Bu uygulamada, bir terazinin yüzeyinin kapsamlı analizini sağlayan, yüksek hızlı sensöre sahip 3D Temassız Profilleyici NANOVEA ST400'ü sergiliyoruz.

Cihaz, merkez alanın daha yüksek çözünürlüklü bir taramasıyla birlikte tüm numuneyi taramak için kullanılmıştır. Karşılaştırma için ölçeğin dış ve iç yan yüzey pürüzlülüğü de ölçülmüştür.

NANOVEA

ST400

Dış Ölçeğin 3D ve 2D Yüzey Karakterizasyonu

Dış ölçeğin 3D Görünümü ve Yanlış Renk Görünümü, parmak izine veya bir ağacın halkalarına benzer karmaşık bir yapı gösterir. Bu, kullanıcılara kantarın yüzey karakterizasyonunu farklı açılardan doğrudan gözlemlemek için basit bir araç sağlar. Dış kantarın diğer çeşitli ölçümleri, kantarın dış ve iç tarafının karşılaştırılmasıyla birlikte gösterilmektedir.

Balık Pulu Tarama 3D Görünüm Profilometresi
Balık Pulu Tarama Hacmi 3D Profilometre
Balık Ölçeği Tarama Adım Yüksekliği 3D Optik Profilleyici

YÜZEY PÜRÜZLÜLÜĞÜ KARŞILAŞTIRMASI

Balık Pulu Profilometresi 3D Tarama

SONUÇ

Bu uygulamada, NANOVEA 3D Temassız Optik Profilleyicinin bir balık pulunu çeşitli şekillerde nasıl karakterize edebileceğini gösterdik. 

Pulun dış ve iç yüzeyleri, sırasıyla 15,92μm ve 1,56μm pürüzlülük değerleri ile yalnızca yüzey pürüzlülüğü ile kolayca ayırt edilebilir. Ayrıca, pulun dış yüzeyindeki oluklar veya sirküller analiz edilerek bir balık pulu hakkında kesin ve doğru bilgiler edinilebilir. Sirkül bantlarının merkez odaktan uzaklığı ölçülmüş ve sirküllerin yüksekliğinin de ortalama olarak yaklaşık 58μm yüksekliğinde olduğu bulunmuştur. 

Burada gösterilen veriler, analiz yazılımında mevcut olan hesaplamaların yalnızca bir kısmını temsil etmektedir.

ŞIMDI, BAŞVURUNUZ HAKKINDA KONUŞALIM