ナノインデンテーションによる応力緩和測定
はじめに
粘弾性材料は、粘性と弾性の両方の材料特性を持つことが特徴である。これらの材料は、一定のひずみで時間依存的に応力が減少(応力「緩和」)し、初期の接触力が大きく損なわれることになる。応力緩和は、材料の種類、組織、温度、初期応力、時間などに依存する。応力緩和を理解することは、特定の用途に必要な強度と柔軟性(緩和)を持つ最適な材料を選択する上で非常に重要である。
ストレス・リラクゼーション測定の重要性
ASTM E328i「材料および構造物の応力緩和の標準試験方法」に従い、材料や構造物に対して、最初に圧子を用いて所定の最大力に達するまで外力を加えておく。最大力に達した後、圧子の位置はその深さで一定に保たれます。そして、圧子の位置を維持するために必要な外力の変化を、時間の関数として測定する。応力緩和試験で難しいのは、深さを一定に保つことです。ナノベアメカニカルテスターの ナノインデンテーション モジュールは、圧電アクチュエーターによる深さの閉ループ(フィードバック)制御を適用することで、応力緩和を正確に測定します。アクチュエーターは深さを一定に保つためにリアルタイムで反応し、荷重の変化は高感度の荷重センサーによって測定・記録されます。この試験は、ほぼすべての種類の材料で実施することができ、厳しい試料寸法の要件は必要ありません。さらに、1つの平らな試料で複数の試験を行うことができ、試験の再現性を確保することができます。
測定目的
このアプリケーションでは、Nanovea Mechanical Tester のナノインデンテーション モジュールが、アクリルと銅のサンプルの応力緩和挙動を測定します。 Nanovea を紹介します。 メカニカルテスター は、ポリマーおよび金属材料の時間依存性の粘弾性挙動を評価するための理想的なツールです。
試験条件
Nanovea Mechanical Testerのナノインデンテーション・モジュールにより、アクリルと銅のサンプルの応力緩和を測定しました。1~10 μm/minの範囲でさまざまな圧痕の負荷速度が適用されました。目標の最大荷重に達すると、一定の深さで緩和が測定されました。一定の深さで100秒間の保持時間を設け、保持時間の経過に伴う荷重の変化を記録しました。試験はすべて周囲条件(室温23℃)で実施し、圧痕試験のパラメータは表1にまとめた。
結果および考察
図2 は、例としてアクリルサンプルと圧痕負荷速度3 µm/minの応力緩和測定中の変位と荷重の時間的変化を示しています。この試験の全体は、3つのステージに分けることができます。ローディング、リラクゼーション、アンローディングです。荷重ステージでは、荷重が徐々に増加するにつれて深さが直線的に増加しました。最大荷重に達すると、弛緩段階が開始されました。このステージでは、装置の閉ループ深度制御機能を使用して100秒間一定の深度を維持し、時間とともに荷重が減少することが観察されました。試験全体は、圧子をアクリル試料から取り外すための除荷ステージで終了しました。
さらに、同じ圧子負荷速度を用いて、緩和(クリープ)期間を除いた圧子試験を実施した。これらの試験から荷重-変位プロットを取得し、アクリルおよび銅の各試料について図3のグラフにまとめました。圧子負荷速度が10μm/minから1μm/minに減少するにつれて、荷重-変位曲線はアクリルと銅の両方でより高い浸透深度に向かって徐々にシフトしていきました。このような時間依存的なひずみの増加は、材料の粘弾性クリープ効果によるものである。低い負荷速度では、粘弾性材料が外部応力に反応し、それに応じて変形するまでの時間が長くなる。
図 4 に、試験した両材料について、異なる押込み荷重速度を用いた一定ひずみでの荷重の推移をプロットし た。荷重は、試験の緩和段階(100秒保持)の初期に高い割合で減少し、保持時間が〜50秒に達すると減速した。ポリマーや金属などの粘弾性材料は、より高い押込み荷重率を受けると、より大きな荷重損失率を示す。緩和時の荷重損失率は、圧子負荷速度が1~10μm/minに増加すると、アクリルでは51.5~103.2mN、銅では15.0~27.4mNに増加したことが、以下に要約されるようになります。 図5.
ASTM規格E328iiに記載されているように、応力緩和試験で遭遇する主な問題は、ひずみ/深さを一定に保つことができない装置であることです。ナノベアメカニカルテスターは、高速で作動する圧電アクチュエーターと独立したコンデンサーの深さセンサーの間で深さの閉ループ制御を行うことができるため、優れた精度の応力緩和測定が可能になっています。緩和の段階では、圧電アクチュエーターが圧子を調節して一定の深さの制約をリアルタイムで維持し、同時に独立した高精度荷重センサーによって荷重の変化が測定・記録されます。
まとめ
ナノベアメカニカルテスターのナノインデンテーション・モジュールを用いて、アクリルと銅のサンプルの応力緩和を、異なる荷重率で測定しました。低い荷重率で圧痕を形成すると、荷重時の材料のクリープ効果により、より大きな最大深さに到達します。アクリルおよび銅の両サンプルは、目標とする最大荷重における圧子位置を一定に保つと、応力緩和挙動を示します。緩和段階での荷重損失の大きな変化は、より高い圧子負荷率の試験で観察された。
ナノベアメカニカルテスターによる応力緩和試験は、ポリマーや金属材料の時間依存の粘弾性挙動を定量的かつ確実に測定できる装置であることを示します。このテスターは、単一プラットフォーム上にナノ・マイクロモジュールを搭載した、他に類を見ない多機能な装置です。湿度・温度制御モジュールを組み合わせることで、幅広い産業に適用可能な環境試験機能を実現します。ナノ・マイクロモジュールには、スクラッチ試験、硬さ試験、摩耗試験などのモードがあり、単一のシステムで最も幅広く、最も使いやすい機械的試験機能を提供します。
さて、次はアプリケーションについてです。
カテゴリー
- アプリケーションノート
- ブロック・オン・リングトライボロジー
- 腐食トライボロジー
- 摩擦試験|摩擦係数
- 高温機械試験
- 高温トライボロジー
- 湿度・ガス トライボロジー
- 湿度機械試験
- 圧痕|クリープとリラクゼーション
- 圧痕|破壊靭性
- 圧痕|硬度・弾性率
- 圧痕|紛失と保管
- 圧痕|応力と歪み
- 圧痕|降伏強度と疲労の関係
- ラボラトリーテスト
- リニアトライボロジー
- 液体機械試験
- 液状トライボロジー
- 低温トライボロジー
- メカニカルテスト
- プレスリリース
- プロフィロメトリー|平坦度・反り率
- プロフィロメトリー|幾何学と形状
- プロフィロメトリー|粗さと仕上がり
- プロフィロメトリー|段差の高さと厚み
- プロフィロメトリー|テクスチャーとグレーン
- プロフィロメトリー|体積・面積
- プロフィロメトリーテスト
- リング・オン・リング トライボロジー
- 回転トライボロジー
- スクラッチテスト|接着剤の不具合について
- スクラッチテスト|コヒーシブフェール
- スクラッチテスト|マルチパス摩耗
- スクラッチテスト|スクラッチハードネス
- スクラッチテスト トライボロジー
- トレードショー
- トライボロジー試験
- 未分類
月別アーカイブ
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月