アメリカ/グローバル: +1-949-461-9292
ヨーロッパ+39-011-3052-794
お問い合わせ

カテゴリー高温機械試験

 

トライボメータによる高温スクラッチ硬度測定

トライボメーターによる高温スクラッチ硬度

トライボメータによる

作成者

DUANJIE, PhD

はじめに

硬度は、材料の永久変形や塑性変形に対する抵抗力を測定するものである。1820年にドイツの鉱物学者フリードリヒ・モースによって開発された硬さ試験で、鋭利な物体との摩擦による傷や摩耗に対する材料の硬さを測定する。1.モース硬度はリニアスケールではなく比較指数であるため、より正確で定性的なスクラッチ硬度測定がASTM規格G171-03に記載されているように開発されました。2.ダイヤモンドの触針でできた傷の平均幅を測定し、傷の硬さ(HSP)を算出するものです。

高温下でのスクラッチ硬度測定の重要性

材料は、サービス要件に基づいて選択されます。大きな温度変化や温度勾配を伴う用途では、高温での材料の機械的特性を調査し、機械的限界を十分に認識することが重要です。材料、特にポリマーは通常、高温になると軟化します。多くの機械的故障は、高温でのみ起こるクリープ変形や熱疲労によって引き起こされます。したがって、高温用途の材料を適切に選択するために、高温での硬度を測定する信頼性の高い技術が必要とされています。

測定目的

この研究では、NANOVEA T50 トライボメーターを使用して、室温から 300℃ までのさまざまな温度でテフロン サンプルの引っかき硬度を測定します。 NANOVEA は、高温での引っかき硬度測定を実行できる機能を備えています。 トライボメータ 高温用途の材料の摩擦学的および機械的評価のための多用途システムです。

ナノビア

T50

試験条件

NANOVEA T50 Free Weight Standard Tribometerを使用して、室温(RT)から300℃の温度範囲でテフロンサンプルの引っかき硬度試験を実施しました。テフロンの融点は326.8°Cです。先端角120°、先端半径200μmの円錐型ダイヤモンドスタイラスを使用しました。テフロン試料は、回転式試料ステージにステージ中心から10 mmの距離で固定した。試料をオーブンで加熱し、常温、50℃、100℃、150℃、200℃、250℃、300℃の温度で試験した。

テストパラメーター

テストパラメーター

ノーマルフォース 2 N
滑りスピード 1mm/s
滑り距離 8mm/temp
大気 空気
温度 RT、50°C、100°C、150°C、200°C、250°C、300°C

結果・考察

図1には、異なる高温でのスクラッチ硬度を比較するために、異なる温度でのテフロンサンプルのスクラッチトラックプロファイルが示されています。スタイラスが2Nの一定荷重で移動しながらテフロンサンプルに突入し、スクラッチトラック内の材料を横に押し出し変形させることで、スクラッチトラック端に材料の山が形成されます。

図2に示すように、スクラッチトラックを光学顕微鏡で観察した。顕微鏡で測定したスクラッチ痕の幅と、計算で求めたスクラッチ硬度(HSP)を図3にまとめて比較しました。 顕微鏡で測定したスクラッチ痕の幅は、NANOVEAプロファイラーで測定した幅と一致し、テフロンサンプルは高温でより広いスクラッチ幅を示しています。温度が常温から300℃に上昇すると、スクラッチトラックの幅は281μmから539μmに増加し、HSPは65MPaから18MPaに減少しています。

NANOVEA T50トライボメータは、高温下でのスクラッチ硬度を高精度かつ高再現性で測定することができます。他の硬度測定とは異なるソリューションを提供し、ナノビアトライボメータを高温トライボメカニックの総合評価システムとしてより完成度の高いものにしています。

図1: 異なる温度でのスクラッチ硬度試験後のスクラッチトラックプロファイル。

図2: 異なる温度で測定した後の顕微鏡下でのスクラッチ痕。

図3: スクラッチトラック幅とスクラッチ硬度の温度に対する変化。

まとめ

この研究では、ASTM G171-03に準拠した高温でのナノビアトライボメータによるスクラッチ硬度測定方法を紹介します。一定荷重でのスクラッチ硬度測定は、トライボメータを用いた材料の硬度比較のための代替的な簡易ソリューションとなります。高温でのスクラッチ硬さ測定が可能なナノビアトライボメータは、材料の高温トライボメカニカル特性の評価に理想的なツールです。

ナノビアトライボメータは、ISOおよびASTMに準拠した回転モードとリニアモードによる精密で再現性の高い摩耗・摩擦試験を提供し、オプションで高温摩耗、潤滑、トライボコロージョンを一つの統合済みシステムとして利用することも可能です。オプションの3D非接触プロファイラを使用すると、粗さなどの表面測定に加えて、摩耗痕の高解像度3Dイメージングを行うことができます。

1 Wredenberg, Fredrik; PL Larsson (2009).「金属と高分子のスクラッチ試験。Experiments and numerics".Wear 266 (1-2):76
2 ASTM G171-03 (2009), "Standard Test Method for Scratch Hardness of Materials Using Diamond Stylus" ダイヤモンドスタイラスを用いた材料のスクラッチ硬度に関する標準試験方法。

さて、次はアプリケーションについてです。

ナノインデンテーションDMAによるローカルスポットガラス転移測定

ナノインデンテーションDMAによるローカルスポットガラス転移測定

詳細はこちら
 
バルク材が一定の速度で均一に加熱されるシナリオを想像してください。バルク材が加熱され、融点に近づくにつれて、その剛性は失われ始めます。同じ力で定期的に圧痕(硬さ試験)を行うと、試料が柔らかくなっているため、圧痕の深さは常に増しているはずです(図1参照)。これは、試料が溶け始めるまで続く。このとき、圧痕の深さが大きく増加することが確認される。このように、一定の振幅の力で振動させ、その変位を測定することにより、材料の相変化を観察することができる。   ガラス転移の精密な局所化について読む!

ナノインデンテーションによる応力緩和測定

詳細はこちら

さて、次はアプリケーションについてです。

ASTM D7187 ナノスクラッチによる温度効果

ASTM D7187では、塗料の傷や汚れに対する耐性が、最終用途において重要な役割を果たします。自動車用塗料は傷の影響を受けやすいため、メンテナンスや修理が難しく、コストがかかります。最高の耐スクラッチ/マー性を達成するために、プライマー、ベースコート、クリアコートのさまざまなコーティング構造が開発されてきました。 ナノスクラッチテスト は,ASTM D7187 に記載されているように,塗膜のスクラッチ/マー挙動のメカニズ ム的側面を測定するための標準試験法として開発されたものである。.スクラッチテストでは,弾性変形,塑性変形,破壊という異なる素変形機構が異なる荷重で発生する。これにより,塗膜の耐塑性,耐破壊性を定量的に評価することができる。

ASTM D7187 ナノスクラッチによる温度効果

高温でのテフロン機械特性

高温では、熱により硬度や粘弾性などのテフロンの機械的特性が変化し、機械的故障が発生する可能性があります。高温用途の候補材料を定量的に評価するには、ポリマー材料の熱機械的挙動の信頼できる測定が必要です。の ナノモジュール ナノベアの メカニカルテスター 高精度ピエゾで荷重を加え、力と変位の変化を測定することで、硬度、ヤング率、クリープを研究します。高度なオーブンは、熱ドリフトの影響を最小限に抑えるために、ナノインデンテーション試験全体を通して、インデンテーションチップとサンプル表面の周囲に均一な温度を作り出します。

ナノインデンテーションによる高温下でのテフロン機械特性の評価

ナノインデンテーションによるはんだのサーモメカニカル解析

はんだ接合部は、0.6℃を超えると熱応力や外的応力を受ける。 Tm どこ Tm は材料の融点 (ケルビン) です。高温下でのはんだのクリープ挙動は、はんだ接続の信頼性に直接影響します。 その結果、さまざまな温度におけるはんだの信頼性の高い定量的な熱機械分析が必要となります。の ナノモジュール ナノベアの メカニカルテスター 高精度ピエゾによって荷重を加え、力と変位の変化を直接測定します。高度な加熱オーブンは、チップとサンプル表面の温度を均一にし、測定精度を確保し、熱ドリフトの影響を最小限に抑えます。

ナノインデンテーションによるはんだのサーモメカニカル解析

 

高温トライボロジー

トライボメータによる高温スクラッチ硬度測定

材料は、サービス要件に基づいて選択されます。大きな温度変化や温度勾配を伴う用途では、高温での材料の機械的特性を調査し、機械的限界を十分に認識することが重要です。材料、特にポリマーは通常、高温になると軟化します。多くの機械的故障は、高温でのみ起こるクリープ変形や熱疲労によって引き起こされます。したがって、高温用途の材料を適切に選択するために、信頼性の高い高温スクラッチ硬さ測定技術が必要とされています。

トライボメータによる高温スクラッチ硬度測定