アメリカ/グローバル: +1-949-461-9292
ヨーロッパ+39-011-3052-794
お問い合わせ

カテゴリートライボロジー試験

 

デニムの耐摩耗性の比較

はじめに

ファブリックの形態と機能は、その品質と耐久性によって決まります。生地は日々使用されることにより、毛羽立ち、毛玉、変色などの磨耗や劣化が生じます。衣料品に使用される生地の品質が悪いと、消費者の不満やブランド毀損につながることが多い。

繊維の機械的特性を定量化しようとすると、多くの課題が生じます。糸の構造、さらには生産された工場によって、試験結果の再現性が低くなることがあります。そのため、異なる試験所での試験結果を比較することは困難です。繊維の摩耗性能の測定は、繊維生産チェーンのメーカー、流通業者、小売業者にとって非常に重要です。十分に管理され、再現性のある耐摩耗性測定は、布地の信頼できる品質管理を保証するために極めて重要です。

クリックすると、アプリケーションノートの全文をご覧いただけます。

回転摩耗と直線摩耗、COFは?(ナノベーストライボメータを用いた総合的検討)

摩耗とは、反対側の表面の機械的作用の結果として、表面上の材料が除去および変形するプロセスです。一方向の滑り、回転、速度、温度など、さまざまな要因の影響を受けます。摩耗、トライボロジーの研究は、物理学、化学から機械工学、材料科学に至るまで、多くの分野に及びます。摩耗の複雑な性質には、凝着摩耗、摩耗摩耗、表面疲労、フレッティング摩耗、エローシブ摩耗などの特定の摩耗メカニズムまたはプロセスに向けた個別の研究が必要です。ただし、「産業摩耗」には通常、複数の摩耗メカニズムが相乗して発生します。

直線往復摩耗試験と回転 (ピンオンディスク) 摩耗試験は、材料の滑り摩耗挙動を測定するために広く使用されている ASTM 準拠のセットアップです。摩耗試験方法の摩耗率の値は、材料の組み合わせの相対的な順位を予測するためによく使用されるため、さまざまな試験設定を使用して測定された摩耗率の再現性を確認することが非常に重要です。これにより、ユーザーは文献で報告されている摩耗率の値を注意深く検討することができます。これは材料の摩擦学的特性を理解する上で重要です。

続きを読む

ナノベーストライボメータによる木材の摩耗試験

ウッドフィニッシュの磨耗とCOFを比較することの重要性

木材は、家、家具、床材などの建築材料として何千年も使用されてきました。自然の美しさと耐久性を兼ね備えており、床材として理想的です。カーペットとは異なり、堅木張りの床は色を長期間保ち、簡単に掃除してメンテナンスできますが、天然素材であるため、ほとんどの木製フローリングは、木材を擦り傷や傷などのさまざまな種類の損傷から保護するために表面仕上げを施す必要があります。時間の経過とともに欠ける。この研究では、Nanovea トライボメータ 3 つの木材仕上げ材の比較性能をよりよく理解するために、摩耗率と摩擦係数 (COF) を測定するために使用されました。

床材に使用される樹種の使用挙動は,しばしばその耐摩耗性に関係する。異なる樹種の個々の細胞および繊維構造の変化は、それらの異なる機械的およびトライボロジー的挙動に寄与している。床材としての木材の実際の使用試験は、高価で再現が困難であり、長時間の試験時間が必要である。その結果、信頼性が高く、再現性があり、直感的に行える簡単な摩耗試験を開発することが貴重となる。

測定目的

本研究では、木材のトライボロジー特性を制御・監視しながら評価するナノベーストライボメーターの能力を示すため、3種類の木材の摩耗挙動をシミュレーションして比較しました。

ディスカッション

サンプルの説明Antique Birch Hardwoodは、7層の酸化アルミニウム仕上げで、日常的な磨耗や損傷を防ぎます。コートシップグレイオーク、サントスマホガニーは、表面仕上げと光沢が異なるラミネートフローリングです。コートシップグレーオークは、スレートグレー色、EIR仕上げ、光沢は控えめです。一方、サントスマホガニーは、濃いワインレッド色で、仕上げ済み、高光沢のため、表面の傷や欠陥がより簡単に隠せます。

図1に,3種類のフローリングサンプルの摩耗試験におけるCOFの推移をプロットした。アンティークバーチハードウッド、コートシップグレーオーク、サントスマホガニーの各サンプルは、それぞれ異なるCOFの挙動を示しています。

上のグラフから、アンティークバーチハードウッドは、試験中ずっと安定したCOFを示した唯一のサンプルであることがわかります。コートシップグレーオークのCOFが急激に増加し、その後徐々に減少しているのは、試料の表面粗さがCOFの挙動に大きく寄与していることを示していると思われます。試料の摩耗が進むにつれて、表面の粗さが減少し、より均質になったため、機械的な摩耗によって試料表面が滑らかになり、COFが減少したことが説明できます。サントスマホガニーのCOFは,試験開始当初は滑らかな漸増傾向を示し,その後,急激な漸減傾向へと移行しました。これは、ラミネートコーティングが摩耗し始めると、スチールボール(カウンター材)が木材基材と接触し、より速く乱れた方法で摩耗し、試験終盤にノイズの多いCOF挙動を引き起こしたことを示していると思われます。

 

アンティークバーチハードウッド。

コートシップ・グレーオーク

サントス・マホガニー

表2は、摩耗試験後のすべてのフローリングサンプルについて、摩耗痕のスキャンと解析の結果をまとめたものです。各サンプルの詳細情報と画像は、図2~7で見ることができます。3つのサンプルの摩耗率の比較から、サントス・マホガニーは他の2つのサンプルよりも機械的摩耗に対する耐性が低いことが証明されたと推察されます。アンティーク・バーチ・ハードウッドとコートシップ・グレイ・オークは、試験中の摩耗挙動は大きく異なるものの、摩耗率は非常によく似ています。アンティークバーチハードウッドは緩やかで均一な摩耗傾向を示し、コートシップグレイオークは既存の表面模様と仕上げにより、浅く穴のあいた摩耗痕を示しました。

結論

本研究では、アンティーク・バーチ・ハードウッド、コートシップ・グレイ・オーク、サントス・マホガニーの3種類の木材の摩擦係数と耐摩耗性を、制御・監視しながら評価するナノベイトライボメーターの能力を紹介しました。アンティークバーチハードウッドの優れた機械的特性は、優れた耐摩耗性につながっています。木材表面の質感と均質性は、摩耗挙動に重要な役割を果たします。コートシップグレイオークの表面には、細胞繊維の間に隙間や亀裂があり、これが摩耗の起点となり伝播する弱点になる可能性があります。

さて、次はアプリケーションについてです。

トライボロジーによるブレーキパッドの評価


ブレークパッドの性能を評価することの重要性

ブレーキパッドは、複数の材料からなる複合材料であり、多くの安全要求を満足させることが必要です。理想的なブレーキパッドは、高い摩擦係数(COF)、低い摩耗率、最小限の騒音、そして様々な環境下で信頼性を維持することです。ブレーキパッドの品質がその要求を満たすことができるようにするために、トライボロジー試験は重要な仕様を特定するために使用することができます。


ブレーキパッドの信頼性の重要性は非常に高く、乗員の安全性を無視することは許されません。そのため、運転状態を再現し、故障の可能性がある箇所を特定することが重要です。
ナノベアを使うと トライボメータ、ピン、ボール、またはフラットと、常に移動する相手材との間に一定の荷重がかかります。 2 つの材料間の摩擦は硬いロードセルで収集されるため、さまざまな荷重と速度での材料特性の収集が可能になり、高温、腐食性、または液体環境でのテストが可能になります。



測定目的

本研究では,室温から700℃まで連続的に温度上昇する環境下で,ブレーキパッドの摩擦係数を調査した。環境温度は、ブレーキパッドの顕著な破損が観察されるまでその場で上昇させた。摺動界面付近の温度を測定するために、ピンの裏側に熱電対を取り付けた。



試験方法と手順




結果および考察

この研究では、主にブレーキパッドが破損し始める温度に焦点を当てています。ピンの材質がブレーキローターと異なるため、得られたCOFは現実の値を表していない。また、収集した温度データはピンの温度であり、摺動界面温度ではないことに注意が必要である。

 








試験開始時(室温)、SS440CピンとブレーキパッドのCOFは約0.2の安定した値を示した。温度が上昇するにつれ、COFは着実に増加し、350℃付近で0.26の値でピークに達した。390℃を超えると、COFは急速に減少し始める。COFは450℃で0.2まで回復し始めたが、その直後に0.05まで減少し始めた。


ブレーキパッドが常に破損する温度は、500℃以上であることが確認された。この温度を過ぎると、COFはもはや出発時のCOFである0.2を維持することができなくなった。



結論




このブレーキパッドは、500℃を超える温度で一貫して破損を示しました。0.2だったCOFは0.26までゆっくりと上昇し、試験終了時(580℃)には0.05まで低下しています。0.05と0.2の差は4倍。つまり、同じ制動力を得るためには、580℃では常温の4倍もの法線力が必要なのです


この研究には含まれていませんが、ナノベーストライボメータは、ブレーキパッドのもう一つの重要な特性である摩耗速度を観察するための試験も行うことが可能です。当社の3D非接触型プロフィロメータを利用することで、摩耗痕の体積を取得し、サンプルの摩耗速度を算出することができます。ナノベーストライボメータは、さまざまな試験条件や環境下で摩耗試験を行うことができ、使用条件を最もよく再現することができます。

さて、次はアプリケーションについてです。

トライボメータによる繊維の磨耗測定

織物の耐摩耗性の測定は非常に困難である。繊維の機械的特性、糸の構造、布地の織り方など、多くの要因が試験中に影響を及ぼします。このため、試験結果の再現性が低く、異なる試験所から報告された値を比較することが困難な場合があります。繊維の摩耗性能は、繊維生産チェーンの製造業者、流通業者、および小売業者にとって非常に重要です。十分に管理された定量的かつ再現可能な トライボメータ 織物製造の品質管理を確実に行うために、耐摩耗性測定は非常に重要である。

トライボメータによる繊維の磨耗測定

トライボメータによるブラシ毛の硬さ性能の評価

ブラシは、世界で最も基本的で広く使われている道具の一つです。歯ブラシ、考古学用ブラシ、ベンチグラインダーブラシ)、材料を塗る(絵筆、化粧ブラシ、金箔ブラシ)、フィラメントを梳く、模様を付けるなどの用途に使われます。ブラシには機械的な力や研磨力がかかるため、適度に使用した後は常に交換が必要です。例えば、歯ブラシのヘッドは、繰り返し使用することでほつれが生じるため、3~4カ月ごとに交換する必要があります。歯ブラシの繊維のフィラメントを硬くしすぎると、柔らかい歯垢ではなく、実際の歯をすり減らしてしまう危険性があります。歯ブラシの繊維を柔らかくしすぎると、ブラシの形が崩れるのが早くなります。ブラシの曲がりの変化や、さまざまな荷重条件下でのフィラメントの摩耗や全体的な形状の変化を理解することは、より用途に合ったブラシを設計するために必要なことです。

トライボメータによるブラシ毛の硬さ性能の評価

低温トライボロジー

低温トライボロジー

氷点下用途の材料のトライボロジー性能をより深く理解するためには、低温トライボロジー、静摩擦係数、動摩擦係数、COF、および摩耗挙動の信頼性の高い測定が必要です。この測定は、摩擦特性と、界面での反応、表面の特徴の連動、表面膜の凝集力、さらには低温での表面間の微小な固体静電接合などの様々な要因の影響とを関連付けるための有用なツールになるのです。

ゴムの低温トライボロジー

高温トライボロジー

トライボメータによる高温スクラッチ硬度測定

材料は、サービス要件に基づいて選択されます。大きな温度変化や温度勾配を伴う用途では、高温での材料の機械的特性を調査し、機械的限界を十分に認識することが重要です。材料、特にポリマーは通常、高温になると軟化します。多くの機械的故障は、高温でのみ起こるクリープ変形や熱疲労によって引き起こされます。したがって、高温用途の材料を適切に選択するために、信頼性の高い高温スクラッチ硬さ測定技術が必要とされています。

トライボメータによる高温スクラッチ硬度測定

 

トライボメータによるスクラッチ硬度測定

この研究では、ナノベー トライボメータ は、さまざまな金属の引っかき硬度を測定するために使用されます。その
高精度、高再現性のスクラッチ硬さ測定が可能です。
ナノベーストライボメータは、トライボロジーとメカニカルな評価のための、より完全なシステムです。

トライボメータによるスクラッチ硬度測定

炭素繊維の機械的性質とトライボロジー特性

による摩耗試験と組み合わせる。 トライボメータ と光学式3次元プロフィロメータによる表面解析の結果、以下のことがわかりました。
複合材料の検査におけるナノベアーの汎用性と精度を紹介します。
方向性のある機械的特性を持つ

炭素繊維の機械的性質とトライボロジー特性