アメリカ/グローバル: +1-949-461-9292
ヨーロッパ+39-011-3052-794
お問い合わせ

カテゴリートライボロジー試験

 

フレッティング摩耗試験 トライボロジー

フレッティング摩耗評価

フレッティング摩耗評価

航空機のフレッティング摩耗評価

著者

Duanjie Li, PhD

によって改訂されました。

Jocelyn Esparza

鉱業・冶金におけるフレッチング摩耗の評価

はじめに

フレッティングとは、"負荷がかかり、振動や何らかの力によって微小な相対運動をする2つの材料の接触部に発生する特殊な摩耗現象 "である。機械が稼働しているとき、ボルトやピンで固定されている接合部、動くことを意図していない部品間、振動するカップリングやベアリングなどでは、必然的に振動が発生する。このような相対的な摺動運動の振幅は、マイクロメートルからミリメートルのオーダーであることが多い。このような低振幅の運動の繰り返しは、表面における深刻な局所的機械摩耗や物質移動を引き起こし、生産効率や機械性能の低下、あるいは機械の破損につながる可能性がある。

定量性の重要性
フレッティング摩耗評価

フレッチング摩耗には、二体摩耗、凝着、フレッチング疲労摩耗など、接触面で発生するいくつかの複雑な摩耗メカニズムが関与することがよくあります。フレッチング摩耗のメカニズムを理解し、フレッチング摩耗保護に最適な材料を選択するには、信頼性の高い定量的なフレッチング摩耗評価が必要です。フレッチング摩耗挙動は、変位振幅、垂直荷重、腐食、温度、湿度、潤滑などの作業環境に大きく影響されます。多用途な トライボメータ さまざまな現実的な作業条件をシミュレートできるこのツールは、フレッチング摩耗の評価に最適です。

Steven R. Lampman, ASMハンドブック:第19巻:疲労と破壊
http://www.machinerylubrication.com/Read/693/fretting-wear

測定目的

本研究では,ステンレス鋼SS304のフレッティング摩耗挙動を異なる振動速度と温度で評価し,その能力を明らかにした。 ナノベア T50 トライボメータは、金属のフレッティング摩耗プロセスを適切に制御・監視してシミュレートすることができます。

ナノビア

T50

試験条件

ステンレス鋼SS304サンプルの耐フレッティング摩耗性を、以下の方法で評価した。 ナノビア 直線往復運動式摩耗モジュールを使用したトライボメータ。対向材としてWC(直径6mm)ボールを使用しました。を使用して摩耗痕を調べた。 ナノビア 3D非接触プロファイラー。 

フレッティングテストは、室温(RT)、200 °Cで行い,SS304試料の耐フレッティング摩耗性に及ぼす高温の影響を検討した。試料ステージに設置した加熱板により、フレッティング試験中の試料を200℃に加熱した。 °C.摩耗率のことです。 Kの式で評価した。 K=V/(F×s)で、ここで V は摩耗量です。 F は法線荷重であり s は滑走距離である。

なお、今回の研究では、カウンター材としてWCボールを例として使用した。形状や表面仕上げの異なるあらゆる固体材料を、カスタムフィクスチャを使用して実際の適用状況をシミュレートすることができます。

テストパラメーター

摩耗計測の

結果・考察

によって算出された摩耗痕の体積損失を、3D摩耗痕プロファイルによって直接かつ正確に把握することができます。 ナノビア 山地解析ソフト。 

低速100rpm、室温での往復摩耗試験では、0.014mmという小さな摩耗痕を示した³.一方、1000rpmの高速回転で行ったフレッティング摩耗試験では、0.12mmというかなり大きな摩耗痕が形成されています。³.このような加速摩耗は,フレッティング摩耗試験で発生する高熱と激しい振動が金属片の酸化を促進し,激しい3体摩耗をもたらすことに起因すると考えられる。200℃の高温環境下でのフレッティング摩耗試験で,金属破片の酸化が促進され,3体摩耗が激しくなった。 °Cは0.27mmと大きめの摩耗痕を形成する³.

1000rpmでのフレッティング摩耗試験で、摩耗量は1.5×10-4 ミリメートル³/Nmとなり,100rpmでの往復摩耗試験と比較して約9倍となった。また,高温でのフレッチング摩耗試験では,摩耗速度がさらに加速され,3.4×10-4 ミリメートル³/Nmとなりました。異なる速度と温度で測定された耐摩耗性にこのような大きな差があることは、現実的なアプリケーションのためのフレッティング摩耗の適切なシミュレーションの重要性を示しています。

トライボシステムにわずかな試験条件の変更を加えると、摩耗挙動が大きく変化することがあります。の汎用性 ナノビア トライボメータは、高温、潤滑、腐食など、さまざまな条件下での摩耗を測定することができます。また、モーターによる正確な速度・位置制御により、0.001~5000rpmの範囲で摩耗試験を行うことができ、研究・試験室において、さまざまなトライボロジー条件下でのフレッティング摩耗を調査するための理想的なツールとなっています。

様々な条件下でのフレッティング摩耗痕

光学顕微鏡下

光学顕微鏡による様々な条件下でのフレッティング摩耗痕の観察

3Dウェアトラックプロファイル

基礎的な理解を深めることができる
フレッティング摩耗機構の

3D摩耗痕プロファイル - フレッティング

結果まとめ

異なるテストパラメータを使用して測定

まとめ

この研究では、その能力を披露した。 ナノビア ステンレス鋼SS304試料のフレッティング摩耗挙動を良好に制御し、定量的に評価するためのトライボメータ。 

試験速度と温度は、材料の耐フレッティング摩耗性に重要な役割を果たします。フレッティング中の高熱と激しい振動により、SS304サンプルの摩耗は9倍近くまで大幅に加速されました。200℃の高温 °Cでさらに磨耗率が3.4×10-4 ミリメートル3/Nmです。 

の多用途性 ナノビア トライボメータは、高温、潤滑、腐食など様々な条件下でのフレッティング摩耗の測定に最適なツールです。

ナノビア トライボメータは、ISOやASTMに準拠した回転・直動モードによる精密で再現性の高い摩耗・摩擦試験と、オプションで高温摩耗、潤滑、トライボコロージョンを1つのシステムに統合して提供することが可能です。当社の比類なき製品群は、薄手・厚手、軟質・硬質のコーティング、フィルム、基材など、あらゆる種類のトライボロジー特性を測定するための理想的なソリューションです。

さて、次はアプリケーションについてです。

ボールベアリング: 高耐摩耗性の研究



はじめに

ボールベアリングはボールを使用して回転摩擦を軽減し、ラジアル荷重とアキシアル荷重を支えます。ベアリング レースの間でボールが転動することにより、2 つの平らな表面が互いに滑り合う場合に比べて、はるかに低い摩擦係数 (COF) が生成されます。ボールベアリングは、多くの場合、高い接触応力レベル、摩耗、高温などの極端な環境条件にさらされます。したがって、高負荷や極端な環境条件下でのボールの耐摩耗性は、ボール ベアリングの寿命を延ばし、修理や交換のコストと時間を削減するために重要です。
ボールベアリングは、可動部品を伴うほぼすべての用途に使用されています。これらは航空宇宙や自動車などの輸送産業やハンドスピナーやスケートボードなどの玩具産業でよく使用されています。

高負荷時のボールベアリングの摩耗評価

ボール ベアリングは、幅広い材料リストから作成できます。一般的に使用される材料は、ステンレス鋼やクロム鋼などの金属、または炭化タングステン (WC) や窒化ケイ素 (Si3n4) などのセラミックまで多岐にわたります。製造されたボール ベアリングが、特定の用途の条件に最適な必要な耐摩耗性を確実に備えていることを確認するには、高荷重下での信頼できるトライボロジー評価が必要です。トライボロジー試験は、制御および監視された方法でさまざまなボール ベアリングの摩耗挙動を定量化および対比し、対象用途に最適な候補を選択するのに役立ちます。

測定目的

この研究では、Nanovea を紹介します。 トライボメータ 高荷重下でのさまざまなボールベアリングの耐摩耗性を比較するための理想的なツールです。

図 1: 軸受試験のセットアップ。

試験手順

異なる材質のボールベアリングの摩擦係数、COF、耐摩耗性をNanoveaトライボメーターで評価しました。カウンター材としてP100グリットのサンドペーパーを使用した。ボールベアリングの摩耗痕を検査しました。 ナノベーア 摩耗テスト終了後の 3D 非接触プロファイラー。テストパラメータを表 1 にまとめます。摩耗率、 Kの式で評価した。 K=V/(F×s)で、ここで V は摩耗量です。 F は法線荷重であり s 滑る距離です。ボール摩耗傷は次の方法で評価されました。 ナノベーア 3D 非接触プロファイラーにより、正確な摩耗量測定を実現します。
自動化された電動ラジアル位置決め機能により、トライボメータはテスト中に摩耗トラックの半径を減少させることができます。このテスト モードはスパイラル テストと呼ばれ、ボール ベアリングが常にサンドペーパーの新しい表面上で滑ることを確認します (図 2)。ボールの耐摩耗性テストの再現性が大幅に向上します。内部速度制御用の高度な 20 ビット エンコーダと外部位置制御用の 16 ビット エンコーダは、正確なリアルタイムの速度と位置情報を提供し、回転速度を継続的に調整して接触部での一定の線形スライド速度を実現します。
この研究では、さまざまなボール素材間の摩耗挙動を簡略化するために P100 グリットのサンドペーパーが使用されており、他の素材の表面で置き換えることができることに注意してください。液体や潤滑剤などの実際の用途条件下で、さまざまな材料カップリングの性能をシミュレートするために、任意の固体材料を置き換えることができます。

図 2: サンドペーパー上のボール ベアリングのスパイラル パスの図。
表 1: 摩耗測定のテストパラメータ。

 

結果・考察

摩耗率はボール ベアリングの耐用年数を決定する重要な要素ですが、ベアリングの性能と効率を向上させるには COF が低いことが望ましいです。図 3 は、テスト中のさまざまなボール ベアリングの COF の変化をサンドペーパーと比較したものです。 SS440 および Al2O3 ボール ベアリングの COF が ~0.32 および ~0.28 であるのに対し、Cr 鋼ボールは摩耗テスト中に COF が ~0.4 増加しました。一方、WC ボールは摩耗テスト全体を通じて約 0.2 の一定の COF を示します。各テストを通じて観察可能な COF の変動が見られますが、これは粗いサンドペーパーの表面に対するボール ベアリングの滑り運動によって引き起こされる振動に起因すると考えられます。

 

図 3: 摩耗テスト中の COF の変化。

図 4 と図 5 は、それぞれ光学顕微鏡と Nanovea 非接触光学プロファイラーで測定された後のボール ベアリングの摩耗痕を比較しています。表 2 は摩耗痕跡分析の結果をまとめています。 Nanovea 3D プロファイラーはボール ベアリングの摩耗量を正確に測定し、さまざまなボール ベアリングの摩耗率を計算して比較することができます。摩耗試験後、Cr 鋼および SS440 ボールは、セラミック ボール、つまり Al2O3 および WC と比較して、はるかに大きな平らな摩耗傷を示すことが観察できます。 Cr 鋼ボールと SS440 ボールの摩耗率は、それぞれ 3.7×10-3 および 3.2×10-3 m3/N m です。比較すると、Al2O3 ボールは耐摩耗性が向上し、摩耗率は 7.2×10-4 m3/N・m です。 WC ボールは、浅い摩耗トラック領域に小さな傷をほとんど示さず、その結果、摩耗率が 3.3×10-6 mm3/N・m と大幅に減少しました。

図4: 試験後のボールベアリングの摩耗痕。

図 5: ボール ベアリングの摩耗痕の 3D 形態。

表 2: ボールベアリングの摩耗痕分析。

図 6 は、4 つのボール ベアリングによってサンドペーパー上に生じた摩耗跡の顕微鏡画像を示しています。 WC ボールが最も激しい摩耗軌跡を生成し (その経路にあるほとんどすべての砂粒子が除去された)、最高の耐摩耗性を備えていることは明らかです。比較すると、Cr スチールと SS440 のボールでは、サンドペーパーの摩耗跡に大量の金属の破片が残りました。
これらの観察は、スパイラル テストの利点の重要性をさらに示しています。これにより、ボール ベアリングが常にサンドペーパーの新しい表面上で滑ることが保証され、耐摩耗性テストの再現性が大幅に向上します。

図 6: サンドペーパー上のさまざまなボール ベアリングに対する摩耗跡。

まとめ

高圧下でのボール ベアリングの耐摩耗性は、そのサービス性能に重要な役割を果たします。セラミックボールベアリングは、高応力条件下での耐摩耗性が大幅に向上し、ベアリングの修理や交換にかかる時間とコストを削減します。この研究では、WC ボール ベアリングはスチール ベアリングと比較して大幅に高い耐摩耗性を示し、激しい摩耗が発生するベアリング用途の理想的な候補となっています。
Nanovea トライボメーターは、最大 2000 N の負荷に対応する高トルク機能と、0.01 ~ 15,000 rpm の回転速度に対応する正確に制御されたモーターを備えて設計されています。 ISO および ASTM に準拠した回転モードおよび直線モードを使用した反復可能な摩耗および摩擦試験を提供し、オプションの高温摩耗および潤滑モジュールを 1 つの事前統合システムで利用できます。この比類のない範囲により、ユーザーは高応力、摩耗、高温などのボール ベアリングのさまざまな過酷な作業環境をシミュレートできます。また、高荷重下での優れた耐摩耗性材料のトライボロジー挙動を定量的に評価するための理想的なツールとしても機能します。
Nanovea 3D 非接触プロファイラーは、正確な摩耗量測定を提供し、摩耗跡の詳細な形態を分析するツールとして機能し、摩耗メカニズムの基本的な理解にさらなる洞察を提供します。

作成者
Duanjie Li 博士、ジョナサン・トーマス、ピエール・ルルー

ブロック・オン・リング摩耗試験

ブロック・オン・リングの摩耗評価の重要性

摺動摩耗とは、荷重がかかった状態で、2つの材料が接触部で互いに滑り、材料が徐々に失われることである。自動車、航空宇宙、石油・ガスなど、機械やエンジンが稼働している様々な産業で必然的に発生する。このような摺動運動は、表面での深刻な機械的摩耗や材料移動を引き起こし、生産効率や機械性能の低下、あるいは機械の破損につながる可能性がある。
 

 

滑り摩耗には、凝着摩耗、二体摩耗、三体摩耗、疲労摩耗など、接触面で発生する複雑な摩耗メカニズムが関与することがよくあります。材料の摩耗挙動は、通常の荷重、速度、腐食、潤滑などの作業環境に大きく影響されます。多用途な トライボメータ さまざまな現実的な作業条件をシミュレートできるため、摩耗評価に最適です。
ブロック オン リング (ASTM G77) 試験は、さまざまなシミュレーション条件で材料の滑り摩耗挙動を評価する広く使用されている手法で、特定のトライボロジー用途における材料カップルの信頼できるランク付けを可能にします。
 
 

 

測定目的

このアプリケーションでは、ナノベアメカニカルテスターが、ステンレス鋼SS304とアルミニウムAl6061金属合金サンプルのYSとUTSを測定しています。これらのサンプルは、ナノベアの圧痕法の信頼性を示す、一般的に認識されているYSとUTSの値で選ばれました。

 

S-10 リング上の H-30 ブロックの滑り摩耗挙動は、Block-on-Ring モジュールを使用する Nanovea のトライボメータによって評価されました。 H-30 ブロックは硬度 30HRC の 01 工具鋼で作られていますが、S-10 リングは表面硬度 58 ~ 63 HRC の鋼タイプ 4620、リング直径約 34.98 mm です。摩耗挙動への影響を調査するために、乾燥した潤滑環境でブロック オン リング テストが実行されました。潤滑試験は USP 重鉱油で実施されました。 Nanovea の摩耗痕跡を調査しました。 3D非接触表面形状計。試験パラメータを表 1 にまとめます。摩耗率 (K) は、式 K=V/(F×s) を使用して評価しました。ここで、V は摩耗量、F は垂直荷重、s は滑り距離です。

 

 

結果および考察

図 2 は、乾燥環境と潤滑環境でのブロックオンリング テストの摩擦係数 (COF) を比較しています。乾燥した環境では、潤滑された環境よりもブロックの摩擦が大幅に大きくなります。 COF
最初の 50 回転のならし期間中に変動し、残りの 200 回転摩耗テストでは約 0.8 の一定 COF に達します。比較すると、USP 重鉱油潤滑で実行されたブロック オン リング テストは、500,000 回転摩耗テスト全体を通じて 0.09 という低い COF を一定に示しました。潤滑剤は、表面間の COF を最大 90 分の 1 に大幅に削減します。

 

図3,図4に乾式および潤滑式摩耗試験後のブロックの摩耗痕の光学画像と断面2次元プロフィールを示す。また,摩耗痕の体積と摩耗速度を表2に示す。72rpmの低回転数で200回転させた乾式摩耗試験後のスチールブロックは、9.45mm˙と大きな摩耗痕体積を示しています。これに対し、鉱物油潤滑剤を用いて197rpmの高速回転で50万回転させた摩耗試験では、0.03mm˙と大幅に小さい摩耗痕が形成されました。

 


図3は、潤滑摩耗試験での穏やかな摩耗に比べ、乾式摩耗試験での激しい摩耗の様子を示しています。乾式摩耗試験で発生する高熱と激しい振動は、金属片の酸化を促進し、激しい3体摩耗を引き起こします。潤滑摩耗試験では、鉱油が摩擦を減らし、接触面を冷却し、摩耗中に生じた摩耗粉を運び去ります。この結果、摩耗量は約8×10ˆと大幅に減少した。このような環境による耐摩耗性の大きな違いは、現実的な使用条件下での適切な滑り摩耗シミュレーションの重要性を示している。

 


試験条件にわずかな変化が加わると、摩耗の挙動が大きく変化することがあります。ナノベアのトライボメータは汎用性が高いため、高温、潤滑、トライボコロージョンの各条件で摩耗測定が可能です。高度なモーターによる正確な速度および位置制御により、0.001~5000rpmの速度で摩耗試験を行うことができるため、研究/試験ラボにとって、さまざまな⾰命条件での摩耗を調べるための理想的なツールとなっています。

 

試料の表面状態は、Nanovea社の非接触型光学式プロイオメーターで検査した。図5は、摩耗試験後のリングの表面形態を示しています。摺動摩耗により生じた表面形態と粗さをより良く表現するために、円筒形状を除去しています。200回転の乾式摩耗試験では、3体摩耗により著しい表面荒れが発生しました。乾式摩耗試験後のブロックとリングの粗さRaは、それぞれ14.1μmと18.1μmであるのに対し、より高速の50万回転潤滑摩耗試験では5.7μmと9.1μmとなりました。このテストは、ピストンリングとシリンダーの接触面に適切な潤滑を行うことの重要性を示しています。激しい摩耗は、無潤滑では接触面を素早く損傷させ、不可逆的なサービス品質の劣化、さらにはエンジンの破損につながる。

 

 

まとめ

この研究では、ASTM G77 規格に準拠したブロック オン リング モジュールを使用して、Nanovea のトライボメーターを使用してスチール金属カップルの滑り摩耗挙動を評価する方法を紹介します。潤滑剤は、材料対の摩耗特性において重要な役割を果たします。鉱油は、H-30 ブロックの摩耗率を約 8×10 分の 1 に減少させ、COF を約 90 分の 1 に減少させます。 Nanovea のトライボメーターは多用途性を備えているため、さまざまな潤滑、高温、摩擦腐食条件下での摩耗挙動を測定するための理想的なツールとなっています。

Nanovea のトライボメーターは、ISO および ASTM 準拠の回転モードおよび直線モードを使用して、正確で再現性のある摩耗および摩擦試験を提供します。また、オプションの高温摩耗、潤滑、および摩擦腐食モジュールも 1 つの事前統合システムで利用できます。 Nanovea の比類のない製品群は、薄いか厚いか、柔らかいか硬いコーティング、フィルム、および基材のあらゆる範囲のトライボロジー特性を決定するための理想的なソリューションです。

さて、次はアプリケーションについてです。

表面処理銅線の耐摩耗性とスクラッチ性の評価

銅線の摩耗・傷評価の重要性

銅は、電磁石や電信機の発明以来、電気配線に使用されてきた長い歴史があります。銅線は、耐食性、はんだ付け性、150℃までの高温での特性から、パネル、メーター、コンピューター、事務機、家電製品など、幅広い電子機器に使用されています。採掘される銅の約半分は、電線・ケーブルの導体製造に使用されています。

銅線の表面品質は、アプリケーションの性能と寿命にとって非常に重要です。ワイヤの微細な欠陥は、過度の摩耗、亀裂の発生と伝播、導電性の低下、不十分なはんだ付け性などにつながる可能性があります。銅線の適切な表面処理は伸線時に発生する表面欠陥を取り除き、耐腐食性、耐傷性、耐摩耗性を向上させます。銅線を使った多くの航空宇宙用途では、予期せぬ機器の故障を防ぐため、その挙動を制御する必要がありま す。銅線表面の耐摩耗性や耐傷性を正しく評価するためには、定量的で信頼性の高い測定が必要です。

 
 

 

測定目的

このアプリケーションでは、異なる銅線の表面処理を制御した摩耗プロセスをシミュレートしています。 スクラッチテスト 処理された表面層に破損を引き起こすのに必要な荷重を測定します。この研究では Nanovea を紹介します トライボメータ メカニカルテスター 電線の評価・品質管理に最適なツールです。

 

 

試験方法と手順

銅線 (ワイヤ A およびワイヤ B) の 2 つの異なる表面処理の摩擦係数 (COF) と耐摩耗性は、線形往復摩耗モジュールを使用する Nanovea トライボメータによって評価されました。 Al₂O₃ ボール (直径 6 mm) が、この用途で使用される相手材です。 Nanovea の摩耗痕跡を調査しました。 3D非接触表面形状計。テストパラメータを表 1 にまとめます。

本研究では、カウンター材料として滑らかなAl₂O₃球を例として使用した。形状や表面仕上げが異なる任意の固体材料は、実際の適用状況をシミュレートするために、カスタムフィクスチャを使用して適用することができます。

 

 

ロックウェルCダイヤモンドスタイラス(半径100μm)を装備したナノベアーの機械式試験機で、マイクロスクラッチモードを使ってコーティングワイヤの順荷重スクラッチ試験を実施しました。スクラッチ試験のパラメータとチップの形状を表2に示す。
 

 

 

 

結果および考察

銅線の磨耗。

図 2 は,摩耗試験中の銅線の COF の変化を示している。A線は摩耗試験中、COFが〜0.4と安定しているのに対し、B線は最初の100回転でCOFが〜0.35となり、徐々に〜0.4まで増加した。

 

図3は、試験後の銅線の摩耗痕を比較したものです。ナノベアの3D非接触プロフィロメータは、摩耗痕の詳細な形態について優れた分析を提供しました。摩耗のメカニズムを根本的に理解することで、摩耗痕の体積を直接かつ正確に把握することができます。ワイヤーBの表面は、600回転の摩耗試験後に摩耗痕が顕著に損傷しています。プロフィロメーターの3D表示では、ワイヤーBの表面処理層が完全に除去され、摩耗プロセスが大幅に加速されたことが分かります。このため、ワイヤーBの銅基板が露出している部分には、平坦な摩耗痕が残っています。この結果、ワイヤBを使用する電気機器の寿命が著しく短くなる可能性があります。一方、ワイヤーAは比較的摩耗が少なく、浅い摩耗痕が残っています。また,ワイヤAの表面処理層は,ワイヤBの表面処理層のように同じ条件下で剥離することはなかった。

銅線表面の傷つきにくさ。

図4は、試験後のワイヤのスクラッチ痕を示したものである。ワイヤーAの保護層は非常に優れた耐傷性を示し、〜12.6Nの荷重で剥離した。これに対し、ワイヤBの保護層は荷重~1.0Nで剥離した。このようにワイヤの耐傷性に大きな差があることから、ワイヤAは耐摩耗性が大幅に向上していることがわかる。図5に示すように、スクラッチ試験中の法線力、COF、深さの変化から、試験中の皮膜破壊についてより深く理解することができる。

結論

この対照研究では、表面処理された銅線の耐摩耗性を定量的に評価するナノベア社のトライボメータと、銅線の耐傷性を確実に評価するナノベア社のメカニカルテスターを紹介しました。ワイヤの表面処理は、その寿命期間中のトライボメカニカル特性に重要な役割を果たします。ワイヤーAの適切な表面処理により、耐摩耗性と耐傷性が大幅に向上し、過酷な環境下での電線の性能と寿命に重要な役割を果たしました。

ナノベアのトライボメータは、ISOおよびASTMに準拠した回転モードとリニアモードによる精密で再現性の高い摩耗・摩擦試験と、オプションの高温摩耗、潤滑、トライボ腐食モジュールを1つの統合済みシステムで利用することができます。ナノベアの比類なき製品群は、薄型・厚型、軟質・硬質コーティング、フィルム、基材のあらゆるトライボロジー特性を測定するための理想的なソリューションです。

さて、次はアプリケーションについてです。

動的負荷トライボロジー

動的負荷トライボロジー

はじめに

摩耗は、事実上すべての産業分野で発生しており、GDPの0.75%に相当するコストがかかっています1。トライボロジーの研究は、生産効率の向上、アプリケーションの性能向上、材料、エネルギー、環境の保護に不可欠です。トライボロジーの応用分野では、振動や揺れが避けられない。過度な外部振動は摩耗を促進し、機械部品の壊滅的な故障につながるサービス性能を低下させます。

従来の死荷重式トライボメータは、質量分銅で通常の荷重をかけます。このような負荷方法では、負荷の選択肢が一定に制限されるだけでなく、高負荷や高速度での激しい非制御振動が発生し、摩耗挙動の評価が制限され一貫性を欠くことになります。材料の摩耗挙動に及ぼす制御された振動の影響を確実に評価することは、さまざまな産業用途における研究開発や品質管理にとって望ましいことです。

Nanoveaの画期的な高負荷 トライボメータ 動的荷重制御システムにより、最大耐荷重は 2000 N です。高度な空気圧圧縮空気負荷システムにより、ユーザーは摩耗プロセス中に発生する望ましくない振動を減衰するという利点を利用して、高い垂直荷重下での材料のトライボロジー挙動を評価できます。したがって、古い設計で使用されていた緩衝スプリングを必要とせず、荷重が直接測定されます。並列電磁石振動負荷モジュールは、最大 20 N の所望の振幅と最大 150 Hz の周波数の適切に制御された振動を適用します。

上部ホルダーにかかる横力から直接摩擦を高精度に測定します。変位はその場で監視され、テストサンプルの摩耗挙動の変化についての洞察が得られます。制御された振動荷重下での摩耗試験は、腐食、高温、多湿、および潤滑環境で実行して、トライボロジー用途の実際の作業条件をシミュレートすることもできます。統合された高速 非接触表面形状計 摩耗トラックの形態と摩耗量を数秒で自動的に測定します。

測定目的

この研究では、制御された振動負荷条件下で、さまざまなコーティングと金属サンプルのトライボロジー挙動を研究するNanovea T2000動的負荷トライボメーターの能力を紹介します。

 

試験方法

300μm厚の耐摩耗性コーティングのトライボロジー挙動、例えば摩擦係数、COF、耐摩耗性を評価し、ASTM G992に準拠したピン・オン・ディスクセットアップを用いた従来の死荷重トライボメータとナノベアT2000トライボメータで比較しました。

制御された振動下で、Cu および TiN でコーティングされた別々のサンプルを 6 mm Al2O3 ボールに対して、Nanovea T2000 トライボメーターの動的負荷トライボロジー モードによって評価しました。

試験パラメータを表1にまとめた。

ラインセンサーを搭載した内蔵の3Dプロフィロメーターが試験後に自動的に摩耗痕をスキャンし、最も正確な摩耗量を数秒で測定します。

結果および考察

 

空気圧負荷方式と死荷重方式の比較

 

ナノベアT2000トライボメータを用いた耐摩耗性皮膜のトライボロジー挙動を、従来のデッドロード(DL)トライボメータと比較した。図2は、コーティングのCOFの変化を示しています。摩耗試験中、コーティングは0.6程度のCOFを示すことが分かります。しかし、図3に示した摩耗痕の異なる20箇所の断面プロファイルから、死荷重方式ではコーティングがより激しく摩耗していることがわかります。

デッドロードシステムは、高荷重・高速回転での摩耗により、激しい振動が発生します。接触面に集中する大きな圧力と高速の摺動により、大きな重量振動と構造振動が発生し、摩耗を加速させる。従来の死荷重式トライボメータは、質量分銅を用いて荷重を加える。しかし、高荷重・高速回転の過酷な摩耗条件下では、大きな振動によりウエイトが何度もバウンドし、摩耗痕が不均一になるため、信頼性の低いトライボロジー評価となります。算出された摩耗量は 8.0±2.4×10-4 mm3/N m であり,高い摩耗量と大きな標準偏差を示した。

ナノベアT2000トライボメータは、振動を減衰させるための動的制御負荷システムで設計されています。通常の荷重を圧縮空気で加えることにより、摩耗プロセスで発生する望ましくない振動を最小限に抑えます。さらに、アクティブな閉ループ負荷制御により、摩耗試験の間、一定の負荷がかかり、スタイラスは摩耗痕の深さの変化に追従します。図3aに示すように、より一貫した摩耗痕のプロファイルが測定され、3.4±0.5 x 10-4 mm3/N mという低い摩耗率を実現しました。

図 4 に示す摩耗痕の分析から、ナノベアトライボメーターの空気圧圧縮空気負荷システムによる摩耗試験では、従来のデッドロードトライボメーターと比較して、より滑らかで一貫した摩耗痕が形成されることが確認できます。さらに、Nanovea T2000 トライボメータは、摩耗プロセス中のスタイラスの変位を測定し、摩耗挙動の進行状況をその場でさらに把握することができます。

 

 

Cu試料の摩耗に伴う制御された発振の様子

ナノベア T2000 トライボメーターの平行振動負荷電磁石モジュールでは、制御された振幅と周波数の振動が材料の摩耗挙動に及ぼす影響を調査することができます。図6に示すように、CuサンプルのCOFをその場で記録しています。Cu 試料は、最初の 330 回転の測定では、約 0.3 の一定の COF を示し、界面に安定した接触が形成され、比較的滑らかな摩耗痕が形成されていることがわかる。これは,界面に安定した接触が形成され,比較的滑らかな摩耗痕が形成されていることを示す。摩耗試験を継続すると,COFの変動は摩耗メカニズムの変化を示すようになる。一方,50N で 5N の振幅制御振動を与えた摩耗試験では,摩耗の初期に COF が急激に増加し,摩耗試験中に大きな変動を示すなど,異なる摩耗挙動を示すことが分かる。このようなCOFの挙動は,常用荷重の振動が接触部の不安定な摺動状態に関与していることを示唆している。

図 7 は,一体型非接触光学式プロフィロメータで測定した摩耗痕の形態 を比較したものである。5Nの振幅で制御された銅試料では、無振動時の5.03×108μm3に対して、1.35×109μm3と非常に大きな摩耗痕が観察されます。振動を制御することで摩耗速度が約2.7倍加速され、振動が摩耗挙動に決定的な影響を与えることが示された。

 

TiNコーティングの摩耗に及ぼす制御された揺らぎ

図8にTiNコーティング試料のCOFと摩耗痕を示す。TiNコーティングは,試験中のCOFの変化で示されるように,振動下で著しく異なる摩耗挙動を示す.このように,TiNコーティングは,TiNコーティングとAl₂O₃ボールとの界面での安定した摺動接触により,摩耗試験開始時のランイン期間に続いて〜0.3の一定のCOFを示す.しかし、TiNコーティングが破壊し始めると、Al₂O₃ボールはコーティングを貫通し、その下の新鮮なスチール基材と摺動するようになります。同時に摩耗痕に硬いTiNコーティングの破片が大量に発生し、安定した2体摺動摩耗が3体摩耗摩耗に変化します。このような材料カップルの特性の変化は,COFの変化のバラツキを増大させる.5Nと10Nの振動が加わることで、TiNコーティングの破損が400回転から100回転以下まで加速される。振動を制御した摩耗試験後のTiNコーティング試料の摩耗痕が大きくなっていることは、このようなCOFの変化と一致している。

結論

ナノベアトライボメータT2000の高度な空圧負荷システムは、従来のデッドロードシステムと比較して、自然に素早く振動を減衰させるという本来の優位性を持っています。この空気圧システムの技術的優位性は、サーボモーターとスプリングの組み合わせで荷重をかける荷重制御システムと比較しても明らかです。この技術により、本研究で実証されたように、高荷重における信頼性の高い、より制御性の高い摩耗評価が保証されます。さらに、アクティブな閉ループ負荷システムは、ブレーキシステムで見られる実際のアプリケーションをシミュレートするために、摩耗試験中に通常の負荷を所望の値に変更することができます。

試験中に制御されていない振動条件の影響を受ける代わりに、ナノベア T2000 動的負荷トライボメータを使用すれば、さまざまな制御振動条件下での材料のトライボロジー挙動を定量的に評価できることを示しました。振動は、金属やセラミックコーティングの試料の摩耗挙動に大きな役割を果たします。

平行電磁石振動負荷モジュールは、設定された振幅と周波数で精密に制御された振動を提供し、環境振動が重要な要素となりがちな実環境での摩耗プロセスをシミュレートすることを可能にします。摩耗中に振動が加わると、CuとTiNコーティングの両サンプルは摩耗率が大幅に増加します。摩擦係数の変化と触針の変位をその場で測定することは、トライボロジー応用における材料の性能を示す重要な指標となります。統合型3D非接触プロフィロメーターは、摩耗量を正確に測定し、摩耗痕の詳細な形態を数秒で解析するツールを提供し、摩耗メカニズムの基本的な理解により多くの洞察を与えます。

T2000は、セルフチューニングされた高品質・高トルクのモーターを搭載し、20ビットの内部速度と16ビットの外部位置エンコーダを備えています。これにより、トライボメータは0.01~5000rpmの範囲で、ステップ状にジャンプしたり連続的に変化する比類ない回転速度を提供することができます。ナノベーストライボメータは、下部にトルクセンサーを配置したシステムとは異なり、上部に高精度ロードセルを配置し、摩擦力を正確かつ個別に測定しています。

ナノベーストライボメータは、ISOおよびASTMに準拠した回転および直線モード(4ボール、スラストワッシャー、ブロックオンリング試験を含む)による精密で再現性の高い摩耗・摩擦試験と、オプションで高温摩耗、潤滑、トライボコロージョンを1つの統合済みシステムで行うことができます。ナノベア T2000 は、薄手・厚手、軟質・硬質のコーティング、フィルム、基材など、あらゆる種類のトライボロジー特性を測定できる理想的なソリューションです。

さて、次はアプリケーションについてです。

DLC膜のトライボロジーにおける湿度効果

DLCの湿度下での摩耗評価の重要性

ダイヤモンド ライク カーボン (DLC) コーティングは、強化された摩擦特性、つまり優れた耐摩耗性と非常に低い摩擦係数 (COF) を備えています。 DLC コーティングは、さまざまな材料上に蒸着されるとダイヤモンドの特性を与えます。有利な摩擦機械特性により、DLC コーティングは航空宇宙部品、かみそりの刃、金属切削工具、ベアリング、オートバイのエンジン、医療用インプラントなどのさまざまな産業用途に適しています。

DLC コーティングは、高真空および乾燥条件下で鋼球に対して非常に低い COF (0.1 未満) を示します。12.しかし、DLCコーティングは環境条件の変化、特に相対湿度(RH)に敏感である。3.湿度や酸素濃度が高い環境では、COFが大幅に増加する可能性があります。4。制御された湿度での信頼性の高い摩耗評価により、トライボロジー用途における DLC コーティングの現実的な環境条件がシミュレートされます。ユーザーは適切な比較を行い、対象用途に最適なDLCコーティングを選択します。
さまざまな湿度にさらされたDLCの摩耗挙動の変化。



測定目的

この研究では Nanovea を紹介します トライボメータ 湿度コントローラーを備えたこのツールは、さまざまな相対湿度における DLC コーティングの摩耗挙動を調査するのに最適なツールです。

 

 



試験方法

DLC コーティングの耐摩擦性と耐摩耗性は、Nanovea Tribometer によって評価されました。テストパラメータを表 1 にまとめます。トライボチャンバーに取り付けられた湿度コントローラは、±1% の精度で相対湿度 (RH) を正確に制御しました。試験後、DLC コーティングの摩耗痕跡と SiN ボールの摩耗痕を光学顕微鏡を使用して検査しました。

注: 潤滑剤や高温などの環境条件下で、さまざまな材料のカップリングの性能をシミュレートするために、任意の固体ボール材料を適用できます。







結果および考察

DLCコーティングは、低摩擦で耐摩耗性に優れているため、トライボロジー用途に最適です。DLCコーティングの摩擦は、図2に示すような湿度依存性の挙動を示しています。比較的乾燥した条件下(10% RH)では、DLCコーティングは摩耗試験中、約0.05という非常に低いCOFを示しました。RHが30%まで上昇すると、DLCコーティングは、試験中、〜0.1の一定のCOFを示しました。COFの初期段階は、RHが50%以上に上昇した最初の2000回転で観察されます。DLCコーティングは、RHが50、70、90%のときにそれぞれ〜0.20、〜0.26、〜0.33という最大COFを示す。慣らし運転後、DLCコーティングのCOFは、RH50、70、90%でそれぞれ〜0.11、0.13、0.20と一定に保たれる。

 



図3はSiNボールの摩耗痕、図4は摩耗試験後のDLCコーティングの摩耗痕を比較したものである。湿度の低い環境にさらされたDLCコーティングの方が、摩耗痕の直径が小さくなっていることがわかる。接触面において繰り返し摺動することで,SiN ボール表面に転写 DLC 層が蓄積される。この段階で,DLC 被膜は自身の転写膜と摺動し,効率的な潤滑剤として相対運動を促進し,せん断変形によるさらなる質量減少を抑制していることがわかる。低RH環境(10%や30%など)では,SiNボールの摩耗痕に転写膜が観察され,ボールの摩耗過程が減速される.この摩耗過程は、図4に示すようにDLCコーティングの摩耗痕の形態に反映される。これは,接触界面に安定したDLC膜が形成され,摩擦と摩耗速度が大幅に低減されたためである。


 


結論




湿度は、DLC コーティングの摩擦学的性能に重要な役割を果たします。 DLC コーティングは、摺動相手 (この研究では SiN ボール) に転写された安定した黒鉛層の形成により、乾燥状態で大幅に強化された耐摩耗性と優れた低摩擦を備えています。 DLC コーティングは、それ自身の転写層に対して滑ります。この転写層は効率的な潤滑剤として機能し、相対運動を促進し、せん断変形によって引き起こされるさらなる質量損失を抑制します。相対湿度が上昇すると、SiN ボール上に膜が観察されなくなり、SiN ボールと DLC コーティングの摩耗率が増加します。

Nanovea トライボメーターは、ISO および ASTM 準拠の回転モードおよび直線モードを使用した反復可能な摩耗および摩擦試験を提供し、1 つの事前統合システムで利用可能なオプションの湿度モジュールを備えています。これにより、ユーザーはさまざまな湿度での作業環境をシミュレートでき、さまざまな作業条件下での材料のトライボロジー挙動を定量的に評価するための理想的なツールをユーザーに提供できます。



ナノベーストライボメータとラボサービスについての詳細はこちら

1 C. Donnet, Surf.Coat.Technol.100-101 (1998) 180.

2 三好和彦, B. Pohlchuck, K.W. Street, J.S. Zabinski, J.H. Sanders, A.A. Voevodin, R.L.C. Wu, Wear 225-229 (1999) 65.

3 R. Gilmore, R. Hauert, Surf.Coat.Technol.133-134 (2000) 437.

4 R. Memming, H.J. Tolle, P.E. Wierenga, Thin Solid Coatings 143 (1986) 31


さて、次はアプリケーションについてです。

極低速域での摩擦評価

 

低速域での摩擦評価の重要性

摩擦とは、固体表面同士を滑らせて相対運動に抵抗させる力のことである。この2つの接触面の相対運動が起こると、界面での摩擦により運動エネルギーが熱に変換される。また、このようなプロセスは、材料の摩耗、ひいては使用中の部品の性能劣化につながる可能性がある。
ゴムは伸び率が大きく、弾力性に富み、防水性や耐摩耗性にも優れているため、自動車のタイヤやワイパーブレード、靴底など、摩擦が重要な役割を果たすさまざまな用途や製品に幅広く使用されている。これらの用途の性質や要求に応じて、異なる材料に対して高い摩擦と低い摩擦のどちらかが望まれる。そのため、さまざまな表面に対するゴムの摩擦を制御し、信頼性の高い方法で測定することが重要になります。



測定目的

さまざまな材料に対するゴムの摩擦係数 (COF) は、Nanovea を使用して制御および監視された方法で測定されます。 トライボメータ。この研究では、極低速でさまざまな材料の COF を測定する Nanovea トライボメーターの能力を紹介したいと思います。




結果および考察

3種類の材料(Stainless steel SS 316, Cu 110, optional Acrylic)に対するゴム球(φ6mm, RubberMill)の摩擦係数(COF)をNanovea Tribometerで評価した.試験した金属サンプルは、測定前に機械的に研磨し、鏡面仕上げとした。法線荷重を加えた際のゴム球のわずかな変形によって面積接触が生じ、COF測定に対する試料表面のアスペリティや不均一性の影響を軽減することもできます。試験パラメータを表 1 に示す。


 

4種類の速度で異なる素材に対してゴム球を衝突させたときのCOFを図2に示す。2 に、ソフトウェアによって自動的に計算された平均 COF をまとめ、図 3 で比較した。興味深いことに、金属試料(SS 316 と Cu 110)は、回転速度が 0.01 rpm という非常に低い値から 5 rpm まで上昇すると、COF が著しく増加することがわかります。この結果は、いくつかの研究室から報告されている結果と一致している。Groschが提案したように4 ゴムの摩擦は、主に(1)ゴムと他の材料の接着、(2)表面の凹凸によるゴムの変形によるエネルギー損失の2つのメカニズムで決定される。シャラマッハ5 軟質ゴム球と硬質表面との界面において,ゴムが相手材から剥離する波が観察された。ゴムが基材表面から剥離する力と剥離の波の速度から、試験中の異なる速度での摩擦の違いを説明することができる。

これに対し、ゴムとアクリルのカップルは、異なる回転数で高いCOFを示しました。回転速度が0.01 rpmから5 rpmまで上昇すると、COF値は1.02から1.09までわずかに上昇した。このような高いCOFは、おそらく試験中に形成された接触面の局所的な化学結合が強くなったことに起因しています。



 
 

 

 




結論



本研究では、ゴムが極低速で、硬い表面に対する摩擦が相対運動の速度が上がるにつれて大きくなるという特異な摩擦挙動を示すことを示した。ゴムは、異なる材料の上を滑るとき、異なる摩擦を示します。ナノベーストライボメータは、異なる速度で制御・監視された方法で材料の摩擦特性を評価することができ、ユーザーは材料の摩擦メカニズムの基本的な理解を深め、目標とするトライボロジー工学アプリケーションに最適な材料カップルを選択することが可能です。

ナノベーストライボメータは、ISOおよびASTMに準拠した回転モードとリニアモードによる精密で再現性の高い摩耗・摩擦試験と、オプションで高温摩耗、潤滑、トライボコロージョンを1つの統合されたシステムで利用することが可能です。0.01 rpmまでの極めて低い速度で回転ステージを制御し、摩擦の変化をその場でモニターすることが可能です。ナノベアの比類なき製品群は、薄いまたは厚い、柔らかいまたは硬いコーティング、フィルム、および基材のトライボロジー特性をフルレンジで測定するための理想的なソリューションとなります。

さて、次はアプリケーションについてです。

高分子のトライボロジー

はじめに

高分子はさまざまな用途に幅広く利用され、日常生活に欠かせないものとなっている。琥珀、絹、天然ゴムなどの天然高分子は、人類の歴史において不可欠な役割を担ってきた。合成高分子の製造プロセスを最適化することで、強靭性、粘弾性、自己潤滑性など、ユニークな物理的特性を実現することができる。

高分子の摩耗と摩擦の重要性

ポリマーは、タイヤ、ベアリング、コンベヤーベルトなどのトライボロジー用途によく使われている。
ポリマーの機械的特性、接触条件、摩耗過程で形成される破片や転写膜の特性によって、さまざまな摩耗メカニズムが発生します。ポリマーが使用条件下で十分な耐摩耗性を有することを確認するためには、信頼性が高く定量的なトライボロジー評価が必要である。トライボロジー評価により、異なるポリマーの摩耗挙動を制御・監視しながら定量的に比較し、目的とする用途に適した材料候補を選択することができます。

ナノベーストライボメータは、ISOとASTMに準拠した回転・直線モードによる再現性の高い摩耗・摩擦試験と、オプションで高温摩耗・潤滑モジュールを1つの統合済みシステムで利用できます。この比類のないラインナップにより、ユーザーは、集中応力、摩耗、高温など、ポリマーのさまざまな作業環境をシミュレートすることができます。

測定目的

この研究では、Nanovea が トライボメータ は、さまざまなポリマーの摩擦抵抗と耐摩耗性を、適切に制御された定量的な方法で比較するための理想的なツールです。

試験方法

さまざまな一般的なポリマーの摩擦係数 (COF) と耐摩耗性は、Nanovea Tribometer によって評価されました。 Al2O3 ボールをカウンター材 (ピン、静止サンプル) として使用しました。ポリマー(動的回転サンプル)の摩耗痕跡は、 非接触3D表面形状計 テスト終了後の光学顕微鏡。オプションとして、非接触内視鏡センサーを使用して、摩耗試験中に動的サンプルにピンが貫通する深さを測定できることに注意してください。試験パラメータを表 1 にまとめます。摩耗率 K は、式 K=Vl(Fxs) を使用して評価しました。ここで、V は摩耗量、F は垂直荷重、s は滑り距離です。

なお,本研究ではAl2O3ボールを対向材として使用した。実際の適用条件下での2つの試料の性能をより詳細にシミュレートするために、任意の固体材料に置き換えることができます。

結果および考察

摩擦はトライボロジー応用において重要な役割を果たす一方、摩耗速度は材料の寿命を決定する重要な要因です。図2はAl2O3ボールに対する各種ポリマーの摩耗試験におけるCOFの推移を比較したものである。COFは、いつ故障が発生し、摩耗が新しい段階に入るかを示す指標として機能します。試験したポリマーのうち、HDPEは摩耗試験中、COFが最も低く、0.15程度に保たれています。COFが滑らかであることは、安定したトライボコンタクトが形成されていることを示唆しています。

図3と図4は、試験後のポリマーサンプルの摩耗軌跡を光学顕微鏡で測定した結果を比較したものです。In-situ非接触三次元形状測定機は、ポリマー試料の摩耗量を正確に測定し、それぞれ0.0029、0.0020、0.0032m3/N mの摩耗量を正確に計算することが可能です。一方、CPVCの摩耗痕には深い平行摩耗痕が認められ、0.1121m3/N mという最も高い摩耗量を示した。

まとめ

高分子の耐摩耗性は、そのサービス性能に重要な役割を果たします。この研究では、ナノベーストライボメータが、様々なポリマーの摩擦係数と摩耗率を、1つの試験片で評価することを紹介しました。
をよく制御し、定量的な方法で行った。HDPEは試験したポリマーの中で最も低いCOFを示し、約0.15であった。HDPE、ナイロン66、ポリプロピレンはそれぞれ0.0029、0.0020、0.0032 m3/N mという低い摩耗率を有しています。低摩擦と優れた耐摩耗性の組み合わせにより、HDPEはポリマートライボロジー用途に適した材料といえます。

In-situ 非接触型3次元形状測定器は、精密な摩耗量測定を可能にし、摩耗痕の詳細な形態を解析するツールを提供することで、摩耗メカニズムの基本的な理解への洞察を深めます

さて、次はアプリケーションについてです。

ピンオンディスク型トライボメータによるストリベックカーブの連続測定

はじめに

可動面の摩耗/摩擦を低減するために潤滑を施す場合、界面の潤滑接触は、境界潤滑、混合潤滑、流体力学的潤滑など、いくつかのレジームから移行することができます。このとき、流体膜の厚さが大きな役割を果たしますが、これは主に流体粘度、界面に加わる荷重、2つの面の相対速度によって決まります。潤滑体制がどのように摩擦に反応するかは、Stribeck [1-4]曲線と呼ばれるもので示されます。

この研究では、連続的なストライベック曲線を測定できることを初めて実証しました。ナノベアを使用する トライボメータ 15000 rpm から 0.01 rpm までの高度な無段階速度制御により、10 分以内にソフトウェアが完全なストライベック曲線を直接提供します。シンプルな初期設定では、従来のストライベック曲線測定でデータをつなぎ合わせる必要があった複数のテストを実行したり、さまざまな速度で段階的な手順をプログラムしたりする必要がなく、指数関数的ランプ モードを選択し、初期速度と最終速度を入力するだけで済みます。この進歩により、潤滑剤レジーム評価全体にわたって正確なデータが提供され、時間とコストが大幅に削減されます。このテストは、さまざまな産業工学用途で使用できる大きな可能性を示しています。

 

クリックして詳細をご覧ください。

ナノビアトライボメータT50による潤滑目薬の比較検討

点眼薬テストの重要性

目薬は、さまざまな目の疾患によって引き起こされる症状を緩和するために使用されます。例えば、軽い目の炎症(乾燥や充血など)の治療、緑内障の発症を遅らせること、感染症の治療などに使用されます。市販の目薬は、主に乾燥の治療に使用されます。目の潤滑に対する効果は、摩擦係数試験で比較・測定することができます。
 
ドライアイは、コンピュータによる眼精疲労や厳しい天候の屋外での活動など、さまざまな要因で引き起こされることがあります。優れた潤滑性のある目薬は、目の外側の表面の水分を維持し補うのを助けます。これにより、ドライアイに伴う不快感、ほてり、炎症、充血を緩和することができます。目薬の摩擦係数(COF)を測定することで、その潤滑効果や他の点眼剤との比較を行うことができます。

測定目的

本研究では,Nanovea T50トライボメーターのピンオンディスク装置を用いて,3種類の目薬用潤滑液の摩擦係数(COF)を測定した.

試験方法と手順

直径6mmのアルミナ製球状ピンをスライドグラスに貼り付け、各目薬液を両表面間の潤滑油として作用させた。すべての実験に使用した試験パラメータは、以下の表1にまとめた。

結果および考察

試験した3種類の点眼液の摩擦係数の最大値、最小値、平均値を以下の表2に示す。また、各目薬のCOF v. Revolutionsグラフを図2〜4に示す。各試験におけるCOFは、全試験時間のほとんどにおいて、比較的一定であった。サンプルAは、最も低い平均COFを示し、最も優れた潤滑特性を有していることが示された。

 

結論

本研究では、Nanovea T50トライボメーターを用いて、3種類の点眼液の摩擦係数を測定し、その機能を紹介します。その結果、サンプルAは他の2つのサンプルと比較して、摩擦係数が低く、潤滑性に優れていることがわかりました。

ナノベーア トライボメータ は、ISO および ASTM に準拠した回転モジュールおよび直線モジュールを使用して、正確で再現性のある摩耗および摩擦試験を提供します。また、オプションの高温摩耗、潤滑、摩擦腐食モジュールも 1 つの事前統合システムで利用できます。このような多用途性により、ユーザーは実際のアプリケーション環境をより適切にシミュレートし、さまざまな材料の摩耗メカニズムやトライボロジー特性の基本的な理解を向上させることができます。

さて、次はアプリケーションについてです。