美国/全球:+1-949-461-9292
欧洲。+39-011-3052-794
联系我们

类别。摩擦学测试

 

岩石摩擦学

岩石摩擦学

使用 NANOVEA 摩擦计

编写者

李端杰,博士

简介

岩石由矿物颗粒组成。这些矿物的类型和丰度,以及矿物颗粒之间的化学键合强度,决定了岩石的机械和摩擦学特性。根据地质岩石循环,岩石可以发生转变,通常分为三种主要类型:火成岩、沉积岩和变质岩。这些岩石表现出不同的矿物和化学成分、渗透性和颗粒尺寸,这些特性导致了它们不同的耐磨性。岩石摩擦学研究岩石在各种地质和环境条件下的磨损和摩擦行为。

岩石摩擦学的重要性

在钻井过程中,岩石会发生各种类型的磨损,包括擦伤和摩擦,导致钻头和切削工具的维修和更换造成重大的直接和间接损失。因此,岩石的可钻性、可钻性、可切削性和磨蚀性的研究在石油、天然气和采矿业中至关重要。岩石摩擦学研究在选择最有效和最具成本效益的钻井策略方面发挥着关键作用,从而提高整体效率并有助于保护材料、能源和环境。此外,最大限度地减少表面摩擦对于减少钻头和岩石之间的相互作用非常有利,从而减少工具磨损并提高钻孔/切割效率。

测量目标

在本研究中,我们模拟并比较了两种类型岩石的摩擦学特性,以展示 NANOVEA T50 的能力 摩擦仪 以受控和监测的方式测量岩石的摩擦系数和磨损率。

NANOVEA

T50

样品

测试程序

使用 Pin-on-Disc 磨损模块的 NANOVEA T50 摩擦磨损试验机评估了两个岩石样品的摩擦系数、COF 和耐磨性。 Al2O3 球(直径 6 mm)用作计数器材料。测试后使用 NANOVEA 非接触式轮廓仪检查磨损轨迹。测试参数总结如下。 

磨损率K的计算公式为K=V/(F×s)=A/(F×n),其中V为磨损体积,F为法向载荷,s为滑动距离,A为磨损轨迹的横截面积,n 是转数。使用 NANOVEA 光学轮廓仪评估表面粗糙度和磨损轨迹轮廓,并使用光学显微镜检查磨损轨迹形态。 

请注意,本研究中以 Al2O3 球作为计数器材料为例。任何不同形状的固体材料都可以使用定制夹具来模拟实际应用情况。

测试参数

钢表面

石灰石、大理石

耐磨环半径 5毫米
常态力 10 N
测试时间 10分钟
速度 100转/分

结果与讨论

图 1 使用 NANOVEA 机械测试仪的微压痕模块对石灰石和大理石样品的硬度 (H) 和弹性模量 (E) 进行了比较。石灰岩样品表现出较低的 H 和 E 值,分别为 0.53 和 25.9 GPa,而大理石样品的 H 值为 1.07,E 值为 49.6 GPa。石灰石样品可归因于其较大的表面不均匀性,这源于其颗粒状和多孔特性。

图 2 描绘了两个岩石样品磨损测试期间 COF 的演变。在磨损测试开始时,石灰石的 COF 最初快速增加至约 0.8,并在整个测试期间保持该值。 COF 的这种突然变化可归因于 Al2O3 球渗透到岩石样品中,这是由于磨损轨迹内接触面发生的快速磨损和粗糙化过程造成的。相比之下,在滑动距离约 5 米后,大理石样品的 COF 显着增加至更高的值,这表明与石灰石相比,其耐磨性更优异。

图1: 石灰石和大理石样品之间的硬度和杨氏模量比较。

图2: 磨损测试过程中石灰石和大理石样品的摩擦系数 (COF) 的演变。

图 3 比较了磨损测试后石灰石和大理石样品的横截面轮廓,表 1 总结了磨损轨迹分析的结果。图 4 显示了光学显微镜下样品的磨损痕迹。磨损轨迹评估与 COF 演变观察一致:大理石样品在较长时间内保持较低的 COF,其磨损率较低,为 0.0046 mm3/N m,而石灰石的磨损率为 0.0353 mm3/N m。大理石优越的机械性能使其比石灰石具有更好的耐磨性。

图3: 磨损轨迹的横截面轮廓。

山谷地区 山谷深度 磨损率
石灰石 35.3±5.9×104 微米2 229±24微米 0.0353毫米3/牛米
大理石 4.6±1.2×104 微米2 61±15微米 0.0046毫米3/牛米

表1: 磨损轨迹分析结果总结。

图4: 光学显微镜下的磨损痕迹。

结论

在这项研究中,我们展示了 NANOVEA 摩擦磨损试验机以受控和监测的方式评估两种岩石样品(即大理石和石灰石)的摩擦系数和耐磨性的能力。大理石卓越的机械性能有助于其卓越的耐磨性。这种特性使得石油和天然气行业的钻探或切割变得具有挑战性。相反,当用作高质量建筑材料(例如地砖)时,它的使用寿命会显着延长。

NANOVEA 摩擦磨损试验机提供精确且可重复的磨损和摩擦测试功能,在旋转和线性模式下均符合 ISO 和 ASTM 标准。此外,它还提供用于高温磨损、润滑和摩擦腐蚀的可选模块,所有这些模块都无缝集成到一个系统中。 NANOVEA 无与伦比的系列是确定薄或厚、软或硬涂层、薄膜、基材和岩石摩擦学的全方位摩擦学特性的理想解决方案。

PTFE涂层磨损测试

ptfe涂层磨损测试

使用摩擦仪和机械测试器

编写者

李端杰,博士

简介

聚四氟乙烯(PTFE),通常被称为特氟隆,是一种具有特别低的摩擦系数(COF)和出色的耐磨性的聚合物,取决于应用的负载。聚四氟乙烯表现出卓越的化学惰性,熔点高达 327°C (620°F),并在低温下保持高强度、高韧性和自润滑性。聚四氟乙烯涂层的特殊耐磨性使其在广泛的工业应用中受到追捧,如汽车、航空航天、医疗,特别是炊具。

量化评估的重要性 ptfe涂料的定量评估

超低的摩擦系数(COF)、出色的耐磨性和高温下特殊的化学惰性的结合,使PTFE成为不粘锅涂层的理想选择。为了在研发过程中进一步提高其机械过程,以及确保在质量控制过程中对故障预防和安全措施的最佳控制,拥有一个可靠的技术来定量评估PTFE涂层的摩擦机械过程是至关重要的。精确控制涂层的表面摩擦、磨损和粘附是确保其预期性能的关键。

测量目标

在这个应用中,使用NANOVEA摩擦仪在线性往复模式下模拟了不粘锅的PTFE涂层的磨损过程。

NANOVEA T50

紧凑型自由重量摩擦仪

此外,NANOVEA机械测试仪被用来进行微划痕附着力测试,以确定PTFE涂层附着力失效的临界负荷。

NANOVEA PB1000

大型平台机械测试仪

测试程序

磨损测试

使用摩擦仪的线性往复式磨损

使用 NANOVEA 评估 PTFE 涂层样品的摩擦学行为,包括摩擦系数 (COF) 和耐磨性 摩擦仪 在线性往复模式下。直径为 3 毫米(100 级)的不锈钢 440 球头用于涂覆涂层。在 PTFE 涂层磨损测试期间持续监测 COF。

 

磨损率K的计算公式为K=V/(F×s)=A/(F×n),其中V为磨损体积,F为法向载荷,s为滑动距离,A为磨损轨迹的横截面积,n是冲程数。使用 NANOVEA 评估磨损轨迹轮廓 光学轮廓仪,并使用光学显微镜检查磨损轨迹形态。

磨损测试参数

负载 30 N
测试时间 5分钟
滑动率 80转/分钟
轨迹的振幅 8毫米
革命 300
球体直径 3毫米
球体材料 不锈钢440
润滑油
气体环境 空气
温度 230C (RT)
湿度 43%

测试程序

划痕测试

使用机械测试仪进行微观划痕附着力测试

使用 NANOVEA 进行 PTFE 划痕粘附力测量 机械测试仪 在微划痕测试仪模式下使用 1200 Rockwell C 金刚石触针(半径 200 μm)进行测量。

 

为了确保结果的可重复性,在相同的测试条件下进行了三次测试。

划痕测试参数

装载类型 渐进的
初始负载 0.01 mN
终极装载 20 mN
装载率 40 mN/min
划痕长度 3毫米
刮擦速度,dx/dt 6.0毫米/分钟
压头的几何形状 120o Rockwell C
压印材料(尖端) 钻石
压头半径 200 μm

结果与讨论

使用摩擦仪的线性往复式磨损

原位记录的 COF 如图 1 所示。由于 PTFE 的粘性较低,测试样品在前 130 转期间的 COF 约为 0.18。然而,一旦涂层破裂,露出下面的基材,COF 就会突然增加到~1。线性往复测试后,使用 NANOVEA 测量磨损轨迹轮廓 非接触式光学轮廓仪,如图 2 所示。根据获得的数据,计算出相应的磨损率为 ~2.78 × 10-3 mm3/Nm,而磨损轨迹的深度确定为 44.94 µm。

NANOVEA T50摩擦仪上的PTFE涂层磨损测试设置。

图1: 在PTFE涂层磨损试验中COF的演变。

图2: 磨损轨道PTFE的Profile提取。

突破前的PTFE

最大COF 0.217
最小COF 0.125
平均COF 0.177

突破后的PTFE

最大COF 0.217
最小COF 0.125
平均COF 0.177

表1: 磨损试验期间,突破前和突破后的COF。

结果与讨论

使用机械测试仪进行微观划痕附着力测试

聚四氟乙烯涂层对基材的附着力是用200微米的金刚石测针进行划痕测试来测量的。显微照片显示在图3和图4中,COF的演变,以及渗透深度显示在图5中。 PTFE涂层划痕测试结果总结在表4中。随着金刚石测针的负载增加,它逐渐渗透到涂层中,导致COF的增加。当达到~8.5N的载荷时,在高压下发生了涂层的突破和基体的暴露,导致了~0.3的高COF。表2中显示的低St Dev表明了使用NANOVEA机械测试仪进行的PTFE涂层划痕测试的可重复性。

图3: PTFE上的完整划痕的显微照片(10X)。

图4: PTFE上的完整划痕的显微照片(10X)。

图5: 摩擦图显示聚四氟乙烯的临界失效点线。

摩擦 故障点 [N] 摩擦力[N]。 基金会
1 0.335 0.124 0.285
2 0.337 0.207 0.310
3 0.380 0.229 0.295
平均值 8.52 2.47 0.297
圣地亚哥 0.17 0.16 0.012

表2: 划痕试验期间的临界载荷、摩擦力和COF的总结。

结论

在这项研究中,我们使用NANOVEA T50摩擦仪在线性往复模式下对不粘锅的PTFE涂层的磨损过程进行了模拟。PTFE涂层表现出较低的COF(约0.18),涂层在130转左右出现了突破。使用NANOVEA机械测试仪对PTFE涂层与金属基体的附着力进行了定量评估,在这个测试中,涂层附着力失效的临界负荷是~8.5N。

 

NANOVEA摩擦仪采用符合ISO和ASTM标准的旋转和线性模式,具有精确和可重复的磨损和摩擦测试能力。它们提供了高温磨损、润滑和摩擦腐蚀的可选模块,所有这些都集成在一个系统中。这种多功能性使用户能够更准确地模拟真实的应用环境,并获得对不同材料的磨损机制和摩擦学特性的理解。

 

NANOVEA机械测试仪包括纳米、微观和宏观模块,每个模块都包括符合ISO和ASTM标准的压痕、划痕和磨损测试模式,在一个系统中提供最广泛和最方便的测试能力。

现在,让我们来谈谈你的申请

使用摩擦仪绘制地板的渐进式磨损图

地板的渐进式磨损测绘

使用集成了轮廓仪的摩擦仪

编写者

刘志强

简介

地板材料被设计为耐用,但它们经常会因运动和家具使用等日常活动而受到磨损。为了确保其使用寿命,大多数类型的地板都具有防止损坏的保护性耐磨层。然而,耐磨层的厚度和耐用性根据地板类型和人流量水平而变化。此外,地板结构内的不同层,例如 UV 涂层、装饰层和釉料,具有不同的磨损率。这就是渐进式磨损映射的用武之地。使用 NANOVEA T2000 摩擦磨损测试仪和集成 3D 非接触式轮廓仪,可以对地板材料的性能和寿命进行精确监控和分析。通过提供对各种地板材料磨损行为的详细了解,科学家和技术专业人员可以在选择和设计新地板系统时做出更明智的决策。

渐进式磨损图对楼板的重要性

地板测试传统上以样品的磨损率为中心来确定其抗磨损的耐久性。然而,渐进式磨损图可以在整个测试过程中分析样品的磨损率,对其磨损行为提供宝贵的见解。这种深入的分析允许在摩擦数据和磨损率之间建立关联,这可以确定磨损的根本原因。应该注意的是,在整个磨损试验中,磨损率是不恒定的。因此,观察磨损的进展情况可以对样品的磨损进行更准确的评估。超越了传统的测试方法,采用渐进式磨损图谱,促进了地坪测试领域的重大进步。

带有集成 3D 非接触式轮廓仪的 NANOVEA T2000 摩擦磨损试验机是磨损测试和体积损失测量的突破性解决方案。它能够在销和轮廓仪之间精确移动,消除磨损轨迹半径或位置的任何偏差,从而保证结果的可靠性。但这还不是全部 - 3D 非接触式轮廓仪的先进功能可实现高速表面测量,将扫描时间缩短至短短几秒。 NANOVEA T2000 能够施加高达 2,000 N 的负载并实现高达 5,000 rpm 的旋转速度 摩擦仪 在评估过程中提供多功能性和精确性。显然,该设备在渐进磨损测绘中发挥着至关重要的作用。

 

图1: 磨损测试前的样品设置 (左)和磨损测试后的磨损轨迹轮廓测量(右)。

测量目标

对两种类型的地板材料进行了渐进式磨损图测试:石材和木材。每个样品总共经历了7个测试周期,测试时间分别为2、4、8、20、40、60和120秒,从而可以比较不同时期的磨损情况。在每个测试周期后,使用NANOVEA 3D非接触式轮廓仪对磨损轨迹进行了剖析。从轮廓仪收集的数据中,可以使用NANOVEA摩擦仪软件或我们的表面分析软件Mountains中的集成功能来分析孔的体积和磨损率。

NANOVEA

T2000

木材和石材的磨损图谱测试样本

 样品 

磨损图谱测试参数

负载40 N
测试时间变化多端
速度200转/分钟
RADIUS10毫米
距离变化多端
球体材料碳化钨
球体直径10毫米

在7个周期中使用的测试时间为 2、4、8、20、40、60和120秒分别。 所走的距离是 0.40,0.81,1.66,4.16,8.36,12.55,和25.11米。

磨损测绘结果

木质地板

测试周期最大COF最小COF平均。价值链
10.3350.1240.275
20.3370.2070.295
30.3800.2290.329
40.3930.2650.354
50.3520.2050.314
60.3450.1990.312
70.3150.2110.293

 

辐射方向

测试周期总体积损失(µm3总距离
行驶(米)
磨损率
(mm/Nm) x10-5
瞬时磨损率
(mm/Nm) x10-5
12962476870.401833.7461833.746
23552452271.221093.260181.5637
35963713262.88898.242363.1791
48837477677.04530.629172.5496
5120717995115.40360.88996.69074
6147274531827.95293.32952.89311
7185131921053.06184.34337.69599
木材渐进式磨损率与总距离的关系

图2: 磨损率与总行驶距离的关系(左图)
和木地板的瞬时磨损率与测试周期(右图)。

木地板的渐进式磨损图

图3: 木地板上的#7测试的COF图和磨损轨迹的三维视图。

磨损测绘提取的剖面图

图4: #7试验的木质磨损轨道的横断面分析

渐进式磨损图的体积和面积分析

图5: 木质样品测试#7的磨损轨迹的体积和面积分析。

磨损测绘结果

石材地面铺设

测试周期最大COF最小COF平均。价值链
10.2490.0350.186
20.3490.1970.275
30.2940.1540.221
40.5030.1240.273
50.5480.1060.390
60.5100.1290.434
70.5270.1810.472

 

辐射方向

测试周期总体积损失(µm3总距离
行驶(米)
磨损率
(mm/Nm) x10-5
瞬时磨损率
(mm/Nm) x10-5
1962788460.40595.957595.9573
28042897311.222475.1852178.889
313161478552.881982.355770.9501
431365302157.041883.2691093.013
51082173218015.403235.1802297.508
62017496034327.954018.2821862.899
74251206342053.064233.0812224.187
石材地板的磨损率与距离
石材地板的瞬时磨损率图

图6: 磨损率与总行程对比(左)。
和石料地板的瞬时磨损率与测试周期(右图)。

石材地面的三维轮廓磨损轨道

图7: #7试验在石材地板上的COF图和磨损轨迹的三维视图。

石材地板渐进式磨损测绘提取的剖面图
石材地坪提取剖面最大深度和高度的孔和峰的面积

图8: #7试验的石料磨损轨迹的横截面分析。

木地板渐进式磨损图的体积分析

图9: #7号石料样品的磨损痕迹的体积和面积分析。

讨论

瞬时磨损率用以下公式计算:
地板配方的渐进式磨损图

其中V是一个孔的体积,N是负载,X是总距离,这个方程式描述了测试周期之间的磨损率。瞬时磨损率可以用来更好地识别整个测试过程中的磨损率变化。

两种样品都有非常不同的磨损行为。随着时间的推移,木地板开始时的磨损率很高,但很快就下降到一个较小的稳定值。对于石材地板来说,磨损率似乎从一个低值开始,并随着周期的推移趋向于一个较高的值。瞬时磨损率也显示出很小的一致性。造成这种差异的具体原因尚不确定,但可能是由于样品的结构造成的。石材地板似乎由松散的颗粒组成,与木材的紧凑结构相比,其磨损程度不同。要确定这种磨损行为的原因,还需要进行更多的测试和研究。

摩擦系数(COF)的数据似乎与观察到的磨损行为一致。木质地板的COF图在整个周期中看起来是一致的,补充了其稳定的磨损率。石材地板的平均摩擦系数在整个循环过程中都在增加,这与磨损率随循环增加的情况类似。摩擦图的形状也有明显的变化,表明球与石材样品的互动方式发生了变化。这在第二周期和第四周期最为明显。

结论

NANOVEA T2000摩擦仪通过分析两个不同地板样品之间的磨损率,展示了其进行渐进式磨损绘图的能力。暂停连续的磨损测试,用NANOVEA 3D非接触式轮廓仪扫描表面,对材料随时间变化的磨损行为有了宝贵的了解。

NANOVEA T2000摩擦磨损仪与集成的3D非接触式轮廓仪提供了各种各样的数据,包括COF(摩擦系数)数据、表面测量、深度读数、表面可视化、体积损失、磨损率等等。这套全面的信息使用户能够更深入地了解系统和样品之间的相互作用。NANOVEA T2000摩擦磨损仪具有可控负载、高精度、易于使用、高负载、宽速度范围和附加环境模块等特点,将摩擦学提升到一个新的水平。

现在,让我们来谈谈你的申请

摩擦试验机测高温下划痕硬度

高温划痕硬度

使用摩擦仪

编写者

杜安杰,博士

简介

硬度衡量的是材料对永久或塑性变形的抵抗力。划痕硬度测试最初是由德国矿物学家弗里德里希-莫尔斯在1820年开发的,它确定了材料对尖锐物体的摩擦造成的划痕和磨损的硬度。1.莫氏标度是一个比较指数,而不是一个线性标度,因此,ASTM标准G171-03所述,开发了一个更准确和定性的划痕硬度测量方法。2.它测量金刚石测针产生的划痕的平均宽度并计算出划痕硬度数(HSP)。

高温下测量划痕硬度的重要性

材料是根据服务要求来选择的。对于涉及重大温度变化和热梯度的应用,测试材料在高温下的机械性能以充分了解其机械极限是至关重要的。材料,特别是聚合物,通常在高温下会软化。很多机械故障是由蠕变变形和热疲劳引起的,只有在高温下才会发生。因此,需要一种可靠的技术来测量高温下的硬度,以确保为高温应用正确选择材料。

测量目标

在本研究中,NANOVEA T50 摩擦试验机在室温至 300°C 的不同温度下测量特氟龙样品的划痕硬度。执行高温划痕硬度测量的能力使得 NANOVEA 摩擦仪 用于高温应用材料的摩擦学和机械评估的多功能系统。

NANOVEA

T50

测试条件

NANOVEA T50摩擦试验机可用于室温(RT)到300℃的温度范围内对特氟隆样品进行划痕硬度测试。特富龙的熔点为326.8°C。使用顶角为120°、尖端半径为200 µm的锥形金刚石测针。特氟隆样品被固定在旋转式样品台上,与平台中心的距离为10毫米。样品被烤箱加热,在RT、50°C、100°C、150°C、200°C、250°C和300°C的温度下进行测试。

测试参数

高温划痕硬度的测量

常态力 2 N
滑动速度 1毫米/秒
划痕长度 每个温度8毫米
气体环境 空气
温度 RT, 50°C, 100°C, 150°C, 200°C, 250°C, 300°C。

结果与讨论

为了比较不同温度下的划痕硬度,图1显示了特氟龙样品在不同温度下的划痕轮廓。当测针以2N的恒定载荷行进时,在划痕边缘形成材料堆积,并刺入特氟隆样品,将划痕中的材料推向一侧并使之变形。

如图2所示,在光学显微镜下检查划痕。显微镜测量的划痕宽度和计算出的划痕硬度值(HSP)在图3中进行了总结和比较。 显微镜测量的划痕宽度与使用NANOVEA轮廓仪测量的划痕宽度一致,特氟隆样品在较高温度下表现出更宽的划痕宽度。当温度从RT上升到300℃时,它的划痕宽度从281微米增加到539微米,HSP从65MPa下降到18MPa。

使用NANOVEA T50摩擦磨损仪可以高精度、高重复性地测量高温下的划痕硬度。它提供了一个不同于其他硬度测量的解决方案,并使NANOVEA摩擦仪成为一个更完整的系统,用于全面的高温三坐标机械评估。

图1: 在不同温度下进行划痕硬度测试后的划痕轮廓。

图2: 在不同温度下测量后,显微镜下的划痕痕迹。

图3: 刮痕宽度和刮痕硬度与温度的变化。

结论

在这项研究中,我们展示了NANOVEA摩擦仪如何在高温下测量符合ASTM G171-03标准的划痕硬度。恒定载荷下的划痕硬度测试为使用摩擦仪比较材料的硬度提供了另一种简单的解决方案。在高温下进行划痕硬度测量的能力使NANOVEA摩擦仪成为评估材料高温三相力学性能的理想工具。

NANOVEA摩擦仪还提供精确和可重复的磨损和摩擦测试,使用符合ISO和ASTM标准的旋转和线性模式,在一个预集成的系统中可选择高温磨损、润滑和三相腐蚀模块。可选的3D非接触式轮廓仪,除了用于其他表面测量(如粗糙度)外,还可以对磨损轨迹进行高分辨率的3D成像。

1 Wredenberg, Fredrik; PL Larsson (2009)."金属和聚合物的划痕测试。实验和数值"。磨损266(1-2)。76
2 ASTM G171-03 (2009), "使用金刚石测针测试材料的划痕硬度的标准测试方法"

现在,让我们来谈谈你的申请

工业涂料的划痕和磨损评估

工业涂料

使用摩擦试验机进行划痕和磨损评估

编写者

李端杰博士和安德烈亚-赫尔曼博士

简介

丙烯酸聚氨酯漆是一种快干保护涂料,广泛用于各种工业应用,如地板漆、汽车漆等。当作为地坪漆使用时,它可以服务于人流和胶轮车流量大的地方,如人行道、路边和停车场。

划痕和磨损测试对质量控制的重要性

传统上,根据ASTM D4060标准,采用Taber磨损试验来评估丙烯酸聚氨酯地坪漆的耐磨性。然而,正如标准中所提到的,"对于某些材料,由于测试过程中车轮的磨料特性发生变化,使用Taber磨料磨具进行的磨损测试可能会发生变化。“1这可能导致检测结果的可重复性差,并造成比较不同实验室报告的值的困难。此外,在Taber磨损试验中,耐磨性计算为在指定次数的磨损循环下的重量损失。而丙烯酸聚氨酯地坪漆的推荐干膜厚度为37.5 ~ 50 μm2。

Taber Abraser的侵蚀性磨蚀过程可以迅速磨穿丙烯酸聚氨酯涂层,并造成基材的质量损失,从而导致涂料重量损失计算的巨大误差。在磨蚀试验过程中,磨料颗粒植入涂料中也会造成误差。因此,一个控制良好的可量化和可靠的测量对于确保涂料的可重复性磨损评估至关重要。此外,还有 划痕测试 允许用户在实际应用中检测到过早的粘合剂/胶粘剂失效。

测量目标

在这项研究中,我们展示了 NANOVEA 摩擦计 微纳米力学测试系统 是工业涂料评估和质量控制的理想选择。

使用NANOVEA摩擦仪,以控制和监测的方式模拟不同面漆的丙烯酸聚氨酯地板漆的磨损过程。微量划痕测试被用来测量导致涂料内聚或粘合失效所需的负荷。

NANOVEA T100

紧凑型气动摩擦仪

NANOVEA PB1000

大型平台机械测试仪

测试程序

本研究评估了四种市售的水性丙烯酸地板涂料,它们具有相同的底漆(基底漆)和相同配方的不同面漆,为了提高耐久性,在添加剂的混合上有小的变化。这四种涂料被确定为样品A、B、C和D。

磨损测试

NANOVEA 摩擦计用于评估摩擦学行为,例如摩擦系数、COF 和耐磨性。将 SS440 球头(直径 6 毫米,等级 100)应用于测试涂料。 COF 是现场记录的。磨损率K的计算公式为K=V/(F×s)=A/(F×n),其中V为磨损体积,F为法向载荷,s为滑动距离,A为磨损轨迹的横截面积,n是转数。表面粗糙度和磨损轨迹轮廓由 NANOVEA 评估 光学轮廓仪,并使用光学显微镜检查磨损轨迹形态。

磨损测试参数

常态力

20 N

速度

15米/分钟

测试时间

100、150、300和800周期

划痕测试

配备了罗克韦尔C金刚石触控笔(200 μm半径)的NANOVEA机械测试仪使用微刮擦测试模式对油漆样品进行渐进负载刮擦测试。使用了两种最终负载:5 N的最终负载用于研究底漆上的油漆分层,35 N的最终负载用于研究金属基材上的底漆分层。对每个样品在相同的测试条件下重复进行三次测试,以确保结果的可重复性。

整个划痕长度的全景图像被自动生成,它们的临界失效位置被系统软件与施加的载荷相关联。这一软件功能便于用户随时对划痕进行分析,而不是在划痕测试后立即在显微镜下确定临界载荷。

划痕测试参数

装载类型渐进的
初始负载0.01 mN
终极装载5 N / 35 N
装载率10 / 70 N/min
划痕长度3毫米
刮擦速度,dx/dt6.0毫米/分钟
压头的几何形状120º锥体
压印材料(尖端)钻石
压头半径200 μm

磨损测试结果

在不同转数(100、150、300和800循环)下,对每个样品进行了四次针对盘磨损试验,以监测磨损的演变。在进行磨损测试之前,用NANOVEA 3D非接触剖面仪测量样品的表面形貌,以量化表面粗糙度。所有样品的表面粗糙度均约为1 μm,如图1所示。COF在磨损试验中原地记录,如图2所示。图4为100、150、300和800循环后的磨损轨迹演变,图3为不同样品在磨损过程不同阶段的平均磨损率。

 

与其他三种样品的COF值~0.07相比,样品a的COF值在开始时要高得多,为~0.15,经过300次磨损循环后,COF值逐渐增加,稳定在~0.3。如此高的COF加速了磨损过程,并产生了大量的油漆碎片,如图4所示——样品a的面漆在前100转中已经开始被去除。如图3所示,样品A在前300个循环中磨损率最高,为~5 μm2/N,由于金属基体的耐磨性较好,磨损率略微下降到~3.5 μm2/N。样品C的面漆在150次磨损后开始失效,如图4所示,图2中COF的增加也说明了这一点。

 

相比之下,样品B和样品D表现出增强的摩擦学性能。样品B在整个测试过程中保持较低的COF - COF从~0.05轻微增加到~0.1。这样的润滑效果大大提高了它的耐磨性-面漆在800次磨损循环后仍然对底漆提供优越的保护。样品B在800次循环时的最低平均磨损率仅为~0.77 μm2/N。样品D的面漆在375次循环后开始分层,从图2中COF的突然增加可以看出。样品D在800次循环时的平均磨损率约为1.1 μm2/N。

 

与传统的Taber磨损测量相比,NANOVEA摩擦仪提供了良好控制的可量化和可靠的磨损评估,确保了商业地板/汽车涂料的可重复性评估和质量控制。此外,原位COF测量的能力使用户能够将磨损过程的不同阶段与COF的演变联系起来,这对于提高对各种油漆涂层的磨损机制和摩擦学特性的基本认识至关重要。

图1: 涂料样品的三维形态和粗糙度。

图2: 在引脚磁盘测试期间,COF。

图3: 不同涂料的磨损率的演变。

图4: 钉盘试验期间磨损痕迹的演变。

划痕测试结果

图5显示了以样品A为例,法向力、摩擦力和真实深度与划痕长度的关系图。可以安装一个可选的声发射模块来提供更多信息。随着法向载荷的线性增加,压痕尖端逐渐下沉到被测样品中,这反映在真实深度的逐渐增加上。摩擦力和真实深度曲线的斜率变化可以作为涂层开始出现故障的含义之一。

图5: 法向力、摩擦力和真实深度与划痕长度的关系。 最大载荷为5N的样品A的划痕测试。

图6和图7显示了在最大载荷为5N和35N的情况下测试的所有四个油漆样品的全部划痕。样品D需要更高的负荷,即50N才能使底漆脱层。在5N的最终载荷下的划痕测试(图6)评估了面漆的内聚/粘附失效,而在35N的测试(图7)评估了底漆的分层。显微照片中的箭头表示顶层涂料或底层涂料开始从底层或基材上完全脱落的点。在这一点上的载荷,即所谓的临界载荷,Lc,是用来比较涂料的内聚力或粘合力的,如表1所总结的。

 

很明显,油漆样品D具有最好的界面附着力——在油漆分层处显示出最高的Lc值4.04 N,在底漆分层处显示出36.61 N。样品B显示出第二好的耐刮性。从划痕分析中,我们发现涂料配方的优化对丙烯酸地板涂料的力学性能,或更具体地说,耐划痕性和粘附性至关重要。

表1: 关键负荷的总结。

图6: 最大负荷为5N的完全划痕的显微照片。

图7: 最大负荷为35N的完全划痕的显微照片。

结论

与传统的Taber磨蚀测量相比,NANOVEA机械测试仪和摩擦仪是商业地板和汽车涂料评估和质量控制的卓越工具。NANOVEA机械测试仪在划痕模式下可以检测涂层系统中的附着力/内聚力问题。NANOVEA摩擦仪对涂料的耐磨性和摩擦系数提供了良好控制的可量化和可重复的摩擦学分析。

 

基于对本研究中测试的水基丙烯酸地板涂料的综合摩擦学和机械分析,我们表明样品B拥有最低的COF和磨损率,以及第二好的耐刮擦性,而样品D表现出最好的耐刮擦性和第二好的耐磨性。这一评估使我们能够评估和选择针对不同应用环境需求的最佳候选人。

 

NANOVEA机械测试仪的纳米和微模块都包括ISO和ASTM兼容的压痕,划痕和磨损测试模式,提供了最广泛的测试范围,可在单个模块上进行油漆评估。NANOVEA摩擦计使用符合ISO和ASTM标准的旋转和线性模式提供精确和可重复的磨损和摩擦测试,并可在一个预先集成的系统中提供可选的高温磨损、润滑和摩擦腐蚀模块。NANOVEA无与伦比的范围是确定薄或厚、软或硬涂层、薄膜和基材的全套机械/摩擦学性能的理想解决方案,包括硬度、杨氏模量、断裂韧性、附着力、耐磨性和许多其他性能。可选NANOVEA非接触式光学剖面仪可用于划痕和磨损轨迹的高分辨率三维成像,以及其他表面测量,如粗糙度。

现在,让我们来谈谈你的申请

摩擦仪试验机测量聚合物皮带的磨损和摩擦

聚酯带

使用三坐标测量仪的磨损和破损情况

编写者

李端杰,博士

简介

皮带传动装置在两个或多个旋转轴之间传递动力和跟踪相对运动。作为一种简单和廉价的解决方案,维护工作最少,皮带传动被广泛用于各种应用,如电锯、锯木厂、脱粒机、筒仓鼓风机和输送机。皮带传动装置可以保护机械免于过载,也可以阻尼和隔离振动。

磨损评估的重要性 对皮带传动的重要性

摩擦和磨损对于皮带驱动的机器中的皮带来说是不可避免的。足够的摩擦确保有效的动力传输而不打滑,但过度的摩擦可能会迅速磨损皮带。不同类型的磨损,如疲劳、磨损和摩擦,都发生在皮带传动操作中。为了延长皮带的使用寿命,减少皮带维修和更换的成本和时间,可靠地评估皮带的磨损性能对于提高皮带寿命、生产效率和应用性能是可取的。准确测量皮带的摩擦系数和磨损率,有利于研发和皮带生产的质量控制。

测量目标

在这项研究中,我们模拟和比较了具有不同表面纹理的皮带的磨损行为,以展示其能力。 NANOVEA T2000摩擦磨损仪以受控和监测的方式模拟皮带的磨损过程。

NANOVEA

T2000

测试程序

两条具有不同表面粗糙度和纹理的皮带的摩擦系数,COF和耐磨性是通过以下方法评估的 NANOVEA 高负载 摩擦仪 使用线性往复磨损模块。使用钢 440 球(直径 10 毫米)作为计数器材料。使用集成的方法检查表面粗糙度和磨损轨迹 3D 非接触式轮廓仪。磨损率, K使用公式评估 K=Vl(Fxs),其中 V 是磨损的体积。 F 是法向载荷和 s 是滑动距离。

 

请注意,本研究中使用了光滑的钢440球的对应物作为例子,任何具有不同形状和表面处理的固体材料都可以使用定制的夹具来模拟实际应用情况。

结果与讨论

纹理带和光滑带的表面粗糙度Ra分别为33.5和8.7um,根据用显微镜分析的表面轮廓。 NANOVEA 三维非接触式光学剖面仪。分别在10N和100N的条件下测量了两条被测皮带的COF和磨损率,以比较皮带在不同载荷下的磨损行为。

图1 显示了磨损测试期间皮带的COF的演变。具有不同纹理的带子表现出明显不同的磨损行为。有趣的是,在COF逐渐增加的磨合期之后,在使用10N和100N载荷进行的测试中,纹理带的COF达到较低的~0.5。相比之下,在10N载荷下测试的光滑带在COF稳定后表现出明显较高的~1.4的COF,并在测试的其余部分保持在该值以上。在100N载荷下测试的平滑带迅速被钢制440球磨损,并形成一个大的磨损轨迹。因此,测试在220转时被停止。

图1: 不同载荷下皮带的COF的演变。

NANOVEA三维非接触式轮廓仪提供了一个分析磨损痕迹的详细形态的工具,为从根本上理解磨损机制提供了更多的见解。

表1: 磨损轨迹分析的结果。

图2:  两条皮带的三维视图
在100N的测试之后。

如表1所示,三维磨损轨迹剖面可直接和准确地确定先进分析软件计算的磨损轨迹体积。在220转的磨损试验中,平滑带的磨损轨迹更大更深,体积为75.7 mm3,而纹理带在600转的磨损试验后,磨损体积为14.0 mm3。光滑带对钢球的摩擦力明显增大,导致磨损率比有纹路的皮带高15倍。

 

纹理带和光滑带之间如此巨大的COF差异,可能与带子和钢球之间的接触面积大小有关,这也导致了它们不同的磨损性能。图3显示了两种带子在光学显微镜下的磨损痕迹。磨损轨迹检查与COF演变的观察结果一致。纹理带保持着约0.5的低COF,在10N的负载下进行磨损试验后,没有表现出磨损的迹象。光滑带在10N时显示出一个小的磨损轨迹。

图3:  光学显微镜下的磨损痕迹。

结论

在这项研究中,我们展示了NANOVEA T2000摩擦仪在以良好的控制和定量方式评估皮带的摩擦系数和磨损率方面的能力。在皮带的使用性能中,表面纹理对皮带的摩擦和耐磨性起着关键作用。有纹理的皮带表现出稳定的摩擦系数约为0.5,并拥有较长的使用寿命,从而减少了工具维修或更换的时间和成本。相比之下,光滑皮带对钢球的过度摩擦会迅速磨损皮带。此外,皮带上的负载是影响其使用寿命的一个重要因素。过载会产生非常大的摩擦,导致皮带加速磨损。

NANOVEA T2000摩擦仪采用符合ISO和ASTM标准的旋转和线性模式,提供精确和可重复的磨损和摩擦测试,并在一个预集成的系统中提供可选的高温磨损、润滑和摩擦腐蚀模块。 NANOVEA的 无与伦比的产品系列是确定薄或厚、软或硬的涂层、薄膜和基材的全部摩擦学特性的理想解决方案。

现在,让我们来谈谈你的申请

使用摩擦仪测量砂纸的磨损性能

砂纸的磨损性能

使用摩擦仪

编写者

李端杰,博士

简介

砂纸由粘在纸或布的一面的磨料颗粒组成。颗粒可以使用各种研磨材料,如石榴石、碳化硅、氧化铝和金刚石。砂纸被广泛地应用于各种工业部门,在木材、金属和干墙上形成特定的表面处理。它们经常在由手工或电动工具施加的高压接触下工作。

评估砂纸磨损性能的重要性

砂纸的有效性通常由其在不同条件下的磨损性能决定。粒度,即嵌入砂纸中的磨料颗粒的大小,决定了被打磨材料的磨损率和划痕大小。粒度较高的砂纸的颗粒较小,因此砂纸的打磨速度较低,表面效果较好。粒度相同但由不同材料制成的砂纸在干燥或潮湿条件下会有不一样的表现。需要进行可靠的摩擦学评估,以确保制造的砂纸具有预期的磨料行为。这些评估使用户能够以受控和监测的方式定量比较不同类型的砂纸的磨损行为,以便为目标应用选择最佳候选产品。

测量目标

在这项研究中,我们展示了NANOVEA摩擦计在干燥和潮湿条件下定量评估各种砂纸样品的磨损性能的能力。

NANOVEA

T2000

测试程序

通过 NANOVEA T100 摩擦磨损试验机评估了两种砂纸的摩擦系数 (COF) 和磨损性能。使用440不锈钢球作为计数器材料。每次磨损测试后使用 NANOVEA 检查球磨损痕迹 3D 非接触式光学轮廓仪 以确保精确的体积损失测量。

请注意,为了进行比较研究,我们选择了440不锈钢球作为反面材料,但任何固体材料都可以被替代,以模拟不同的应用条件。

测试结果和讨论

图1为干、湿环境条件下砂纸1和砂纸2的COF比较。在干燥条件下,砂纸1的COF在测试开始时为0.4,随后逐渐下降并稳定在0.3。在潮湿条件下,该样品的平均COF较低,为0.27。相比之下,样品2的COF结果显示干COF为0.27,湿COF为~ 0.37。 

请注意,所有COF图的数据中的振荡是由球在粗糙的砂纸表面的滑动运动产生的振动造成的。

图1: 磨损测试期间COF的演变。

图2总结了磨损疤痕的分析结果。磨损疤痕是用光学显微镜和NANOVEA 3D非接触式光学轮廓仪测量的。图3和图4比较了SS440球在砂纸1和2(湿和干条件)上的磨损试验后的磨损疤痕。如图4所示,NANOVEA光学轮廓仪精确地捕获了四个球的表面形貌及其各自的磨损痕迹,然后用NANOVEA Mountains高级分析软件进行处理,以计算出体积损失和磨损率。在球的显微镜和剖面图上可以看到,与其他球相比,用于砂纸1(干)测试的球表现出较大的扁平磨损痕,体积损失为0.313 毫米3.相比之下,砂纸1(湿)的体积损失为0.131 毫米3.对于砂纸2(干燥),体积损失为0.163 毫米3 而对于砂纸2(湿),体积损失增加到0.237 毫米3.

此外,值得注意的是,COF对砂纸的磨损性能起着重要作用。砂纸1在干燥条件下表现出较高的COF,导致试验中使用的SS440球的磨蚀率较高。相比之下,砂纸2在湿润条件下的COF较高,导致了较高的磨损率。测量后的砂纸的磨损痕迹显示在图5中。

砂纸 1 和砂纸 2 均声称可在干燥和潮湿环境中使用。然而,它们在干燥和潮湿条件下表现出显着不同的耐磨性能。纳诺维娅 摩擦计 提供良好控制的可量化和可靠的磨损评估功能,确保可重复的磨损评估。此外,原位 COF 测量功能使用户能够将磨损过程的不同阶段与 COF 的演变联系起来,这对于提高对砂纸磨损机制和摩擦学特性的基本了解至关重要

图2: 在不同条件下,球的磨损疤痕体积和平均COF。

图3: 测试后的球的磨损疤痕。

图4: 球上磨损疤痕的三维形态。

图5: 在不同条件下,砂纸上的磨损痕迹。

结论

在这项研究中,对两种相同粒度的砂纸在干燥和潮湿条件下的磨蚀性能进行了评估。砂纸的使用条件对工作性能的有效性起着关键作用。砂纸1在干燥条件下拥有明显更好的磨蚀行为,而砂纸2在潮湿条件下表现更好。在评估磨蚀性能时,打磨过程中的摩擦力是一个重要的考虑因素。NANOVEA光学轮廓仪精确地测量任何表面的三维形态,如球上的磨损疤痕,确保在本研究中对砂纸的磨损性能进行可靠的评估。NANOVEA摩擦仪在磨损测试期间就地测量摩擦系数,提供了对磨损过程不同阶段的洞察力。它还使用符合ISO和ASTM标准的旋转和线性模式提供可重复的磨损和摩擦测试,并在一个预集成系统中提供可选的高温磨损和润滑模块。这种无可比拟的范围使用户可以模拟球轴承不同的恶劣工作环境,包括高应力、磨损和高温等。它还提供了一个理想的工具来定量评估卓越的耐磨材料在高负荷下的摩擦学行为。

现在,让我们来谈谈你的申请

活塞磨损测试

活塞磨损测试

使用摩擦仪

编写者

刘志强

简介

摩擦损失约占柴油机燃料中总能量的10%。[1].40-55%的摩擦损失来自于动力缸系统。通过更好地了解动力缸系统中发生的摩擦学相互作用,可以减少摩擦造成的能量损失。

动力缸系统中的摩擦损失有很大一部分源于活塞裙部和气缸套之间的接触。由于现实生活中发动机的力、温度和速度不断变化,活塞裙部、润滑油和气缸接口之间的相互作用相当复杂。优化每个因素是获得最佳发动机性能的关键。这项研究的重点是复制造成摩擦力和活塞裙部-润滑油-气缸套(P-L-C)界面磨损的机制。

 动力缸系统和活塞裙边-润滑油-缸套界面示意图。

[1] Bai, Dongfang.内燃机活塞裙部润滑的建模。Diss.麻省理工学院, 2012

用摩擦片测试活塞的重要性

机油是一种为其应用而精心设计的润滑剂。除了基础油之外,还添加了清洁剂、分散剂、粘度改进剂(VI)、抗磨损/抗摩擦剂和缓蚀剂等添加剂,以提高其性能。这些添加剂影响油在不同操作条件下的表现。油的行为会影响P-L-C界面,并决定是否发生金属-金属接触的显著磨损或流体动力润滑(极少磨损)。

如果不将该地区与外部变量隔离,就很难理解P-L-C接口。用能代表其现实应用的条件来模拟该事件更为实际。该 NANOVEA 摩擦仪 非常适合此目的。配备多个力传感器、深度传感器、逐滴润滑模块和线性往复平台, NANOVEA T2000能够密切模拟发动机组内发生的事件,并获得宝贵的数据,以更好地了解P-L-C接口。

NANOVEA T2000摩擦仪的液体模块

逐滴模块对这项研究至关重要。由于活塞可以以非常快的速度运动(超过3000转/分),因此很难通过浸没样品来形成一层润滑油薄膜。为了解决这个问题,逐滴模块能够持续地在活塞裙部表面施加恒定数量的润滑剂。

新润滑油的应用也消除了脱落的磨损污染物对润滑油性能的影响。

NANOVEA T2000

高负荷摩擦仪

测量目标

本报告将研究活塞裙部-润滑油-缸套的界面。这些界面将通过进行线性往复磨损试验和逐滴润滑油模块进行复制。

润滑剂将在室温和加热条件下使用,以比较冷启动和最佳操作条件。将观察COF和磨损率,以更好地了解界面在实际应用中的表现。

测试参数

用于活塞的摩擦学测试

负载 ............................100 N

测试时间 ............................30分钟

速度 ............................2000转/分

AMPLITUDE ............................10毫米

总距离 ............................1200 m

涂层 ............................钼-石墨

销材料 ............................铝合金 5052

针孔直径 ............................10毫米

润滑油 ............................机油(10W-30)

流动速度 ............................60 mL/min

温度 ............................室温和90°C

线性往复测试结果

在这个实验中,使用了A5052作为反面材料。虽然发动机缸体通常是由A356等铸铝制成的,但A5052的机械性能与A356相似,适合这种模拟测试[2]。

在测试条件下,显著的磨损是
在室温下在活塞裙部观察到的
与90°C时相比。在样品上看到的深深的划痕表明,在整个测试过程中,静态材料和活塞裙部之间经常发生接触。室温下的高粘度可能限制了油完全填满接口处的空隙并产生金属-金属接触。在更高的温度下,油变稀,能够在销和活塞之间流动。因此,在较高温度下观察到的磨损明显减少。图5显示,磨损疤痕的一侧明显比另一侧磨损得少。这很可能是由于出油口的位置。一边的润滑油膜厚度比另一边的厚,造成了不均匀的磨损。

 

 

[2] "5052铝与356.0铝。"MakeItFrom.com, makeitfrom.com/compare/5052-O-Aluminum/A356.0-SG70B-A13560-Cast-Aluminum

线性往复摩擦学试验的COF可以分为高通和低通。高通量指的是样品在正向,或正向移动,低通量指的是样品在反向,或负向移动。据观察,RT油的平均COF在两个方向上都低于0.1。两次通过之间的平均COF为0.072和0.080。发现90°C油的平均COF在各道次之间是不同的。观察到的平均COF值为0.167和0.09。COF的差异进一步证明了油只能够正确地润湿针的一侧。当销轴和活塞裙部之间由于发生流体动力润滑而形成厚膜时,获得了高COF。当发生混合润滑时,在另一个方向观察到较低的COF。关于流体动力润滑和混合润滑的更多信息,请访问我们的应用说明,关于 斯特里贝克曲线.

表1: 活塞的润滑磨损试验结果。

图1: 常温油品磨损试验的COF图A原始曲线B高通过率C低通过率。

图2: 90°C耐磨油测试的COF图A原始轮廓B高通过C低通过。

图3: 来自RT机油磨损试验的磨损痕的光学图像。

图4: 来自RT机油磨损试验的磨损疤痕的孔洞分析量。

图5: 来自RT机油磨损测试的磨损疤痕的轮廓测量扫描。

图6: 来自90°C机油磨损试验的磨损痕的光学图像

图7: 来自90°C机油磨损试验的磨损疤痕的孔洞分析量。

图8: 来自90°C机油磨损试验的磨损痕的轮廓测量扫描。

结论

在一个活塞上进行了润滑的线性往复磨损测试,以模拟在一台机器上发生的事件。
现实生活中运行的发动机。活塞裙部-润滑油-气缸套界面对发动机的运行至关重要。界面上的润滑油厚度对活塞裙部和气缸套之间的摩擦或磨损造成的能量损失负责。为了优化发动机,油膜厚度必须尽可能薄,而不允许活塞裙部和气缸套接触。然而,挑战在于温度、速度和力的变化将如何影响P-L-C界面。

NANOVEA T2000摩擦仪具有广泛的载荷(高达2000 N)和速度(高达15000 rpm),能够模拟发动机中可能存在的不同条件。未来可能的研究课题包括P-L-C接口在不同的恒定载荷、振荡载荷、润滑油温度、速度和润滑油应用方法下的表现。这些参数可以很容易地通过NANOVEA T2000摩擦仪进行调整,从而对活塞裙部-润滑油-缸套界面的机制有一个全面的了解。

现在,让我们来谈谈你的申请

用摩擦仪进行玻璃涂层湿度磨损测试

用摩擦仪进行玻璃涂层湿度磨损测试

了解更多

玻璃涂层湿度

用摩擦仪进行磨损测试

编写者

杜安杰-李硕士,博士

简介

自洁玻璃涂层创造了一个易于清洁的玻璃表面,防止污垢、灰尘和污点的堆积。它的自洁功能大大减少了清洁的频率、时间、能源和成本,使它成为各种住宅和商业应用的有吸引力的选择,如玻璃外墙、镜子、淋浴玻璃、窗户和挡风玻璃。

耐磨性的重要性 自清洁玻璃涂层的重要性

自清洁涂层的一个主要应用是摩天大楼的玻璃外墙的外表面。玻璃表面经常受到强风携带的高速颗粒的攻击。天气状况对玻璃涂层的使用寿命也起着重要作用。当旧的涂层失效时,对玻璃进行表面处理并涂上新的涂层是非常困难和昂贵的。因此,玻璃涂层的耐磨性在以下情况下是非常重要的。
不同的天气状况是关键。


为了模拟自清洁涂层在不同天气下的真实环境条件,需要在受控和监测的湿度下进行可重复的磨损评估。它允许用户正确地比较暴露在不同湿度下的自清洁涂层的耐磨性,并为目标应用选择最佳的候选者。

测量目标

在这项研究中,我们展示了 NANOVEA 配备湿度控制器的T100摩擦仪是研究自清洁玻璃涂层在不同湿度下的耐磨性的理想工具。

NANOVEA

T100

测试程序

钠钙玻璃显微镜载玻片被涂上了两种不同处理配方的自洁玻璃涂层。这两种涂层被确定为涂层1和涂层2。还测试了一个未涂层的裸玻璃载玻片作为比较。


NANOVEA 摩擦仪 配备湿度控制模块的自清洁玻璃涂层用于评估摩擦学行为,例如摩擦系数、COF 和耐磨性。将 WC 球头(直径 6 毫米)应用于测试样品。 COF 是现场记录的。连接到摩擦室的湿度控制器将相对湿度 (RH) 值精确控制在 ±1 % 范围内。磨损试验后,在光学显微镜下检查磨损轨迹形态。

最大负荷 40 mN
结果与讨论

在不同的湿度条件下,对有涂层和无涂层的玻璃进行了针尖对磁盘的磨损试验。
样品。如图所示,在磨损测试期间,COF被现场记录下来。
图1 和平均COF总结为 图2. 图4 比较了磨损试验后的磨损痕迹。


如图所示
图1在30% RH中,一旦开始滑动运动,未镀膜的玻璃就表现出很高的COF,约为0.45,在300转的磨损试验结束时,它逐渐增加到约0.6。与此相比,
涂层玻璃样品 涂层1和涂层2在测试开始时显示出低于0.2的低COF。COF
在测试的其余部分,涂层2的COF稳定在~0.25,而涂层1的COF在~0.25时急剧增加。
~250转,COF达到~0.5的值。当在60% RH中进行磨损试验时,其
在整个磨损测试中,未涂层的玻璃仍然显示出较高的COF值,约为0.45。涂层1和2显示的COF值分别为0.27和0.22。在90% RH中,未涂层的玻璃在磨损试验结束时拥有约0.5的高COF。涂层1和2在磨损试验开始时表现出可比的COF约为0.1。涂层1保持相对稳定的COF~0.15。然而,涂层2在约100转时失效,随后在磨损试验结束时,COF显著增加到约0.5。


自清洁玻璃涂层的低摩擦力是由它的低表面能引起的。它创造了一个非常高的静态
水接触角和低滚降角。它导致在90% RH的涂层表面形成小水滴,在显微镜下显示为
图3.当相对湿度值从30%增加到90%时,也导致涂层2的平均COF从~0.23下降到~0.15。

图1: 在不同的相对湿度下进行针盘试验时的摩擦系数。

图2: 在不同的相对湿度下进行的盘上针测试的平均COF。

图3: 在涂层玻璃表面形成小水滴。

图4 比较了在不同湿度下进行磨损试验后玻璃表面的磨损痕迹。涂层1在30%和60%的相对湿度下进行磨损试验后表现出轻微的磨损迹象。在90%相对湿度的测试后,它拥有一个大的磨损痕迹,与磨损测试期间COF的明显增加相一致。涂层2在干燥和潮湿的环境中进行磨损试验后,几乎没有磨损的迹象,而且在不同湿度的磨损试验中,它也表现出持续的低COF。良好的摩擦学性能和低表面能的结合使涂层2成为恶劣环境中自清洁玻璃涂层应用的良好候选者。相比之下,未涂层的玻璃在不同湿度下显示出较大的磨损痕迹和较高的COF,证明了自清洁涂层技术的必要性。

图4: 在不同的相对湿度下进行针盘测试后的磨损痕迹(200倍放大)。

结论

NANOVEA T100摩擦仪是对不同湿度的自清洁玻璃涂层进行评估和质量控制的卓越工具。原位COF测量的能力使用户能够将磨损过程的不同阶段与COF的演变联系起来,这对于提高对玻璃涂层的磨损机制和摩擦学特性的基本认识至关重要。基于对不同湿度下测试的自清洁玻璃涂层的综合摩擦学分析,我们表明涂层2在干燥和潮湿的环境中都拥有恒定的低COF和卓越的耐磨性,使其成为暴露在不同气候下的自清洁玻璃涂层应用的更好的候选者。


NANOVEA 摩擦仪采用符合ISO和ASTM标准的旋转和线性模式提供精确和可重复的磨损和摩擦测试,在一个预集成的系统中可选择高温磨损、润滑和三相腐蚀模块。可选的3D非接触式轮廓仪可用于高
除了其他表面测量(如粗糙度)外,还可以对磨损轨迹进行分辨率三维成像。 

现在,让我们来谈谈你的申请

高温下的原位磨损测量

原位磨损测量 在高温下

使用摩擦仪

就地磨损测量 航空摩擦磨损仪

编写者

李端杰,博士

简介

线性可变差动变压器(LVDT)是一种用于测量线性位移的坚固电气变压器。它已被广泛用于各种工业应用,包括电力涡轮机、液压系统、自动化、飞机、卫星、核反应堆和许多其他应用。

在本研究中,我们展示了 NANOVEA 的 LVDT 和高温模块附加组件 摩擦仪 允许在高温磨损过程中测量测试样品磨损轨迹深度的变化。这使得用户能够将磨损过程的不同阶段与 COF 的演变联系起来,这对于提高对高温应用材料的磨损机制和摩擦学特性的基本了解至关重要。

测量目标

在这项研究中,我们想展示NANOVEA T50摩擦仪在高温下现场监测材料磨损过程的能力。

不同温度下硅酸铝陶瓷的磨损过程是以控制和监测的方式模拟出来的。

NANOVEA

T50

测试程序

摩擦学行为,如摩擦系数,COF,以及硅酸铝陶瓷板的耐磨性是由NANOVEA摩擦仪评估的。硅酸铝陶瓷板被加热炉从室温RT加热到高温(400℃和800℃),然后在这些温度下进行磨损测试。 

为了比较,当样品从800°C冷却到400°C,然后再冷却到室温时,进行了磨损测试。一个AI2O3球头(6毫米直径,100级)被用于测试样品。在现场对COF、磨损深度和温度进行了监测。

测试参数

的引脚在磁盘上的测量

摩擦仪LVDT样品

磨损率K是用公式K=V/(Fxs)=A/(Fxn)来评估的,其中V是磨损体积,F是法向载荷,s是滑动距离,A是磨损轨道的截面积,n是旋转次数。用NANOVEA光学剖面仪评估了表面粗糙度和磨损轨迹轮廓,并用光学显微镜检查了磨损轨迹的形态。

结果与讨论

图1和图2分别显示了现场记录的COF和磨痕深度。在图1中,"-I "表示当温度从RT增加到高温时进行的试验。"D "代表温度从800°C的较高温度下降。

如图1所示,在不同温度下测试的样品在整个测量过程中表现出可比的COF约为0.6。如此高的COF导致了加速的磨损过程,产生了大量的碎屑。如图2所示,在磨损测试期间,通过LVDT监测磨损轨迹深度。在样品加热前和样品冷却后的室温下进行的测试表明,硅酸铝陶瓷板在RT时表现出渐进的磨损过程,在整个磨损测试过程中,磨损轨迹深度逐渐增加,分别为~170和~150μm。 

相比之下,高温(400°C和800°C)下的磨损试验表现出不同的磨损行为--磨损过程开始时,磨损轨迹深度迅速增加,随着试验的继续进行,它的速度减慢。在400°C-I、800°C和400°C-D温度下进行的试验的磨损轨迹深度分别为~140、~350和~210μm。

在不同的温度下进行的针座测试中的COF

图1. 在不同温度下进行的针盘测试中的摩擦系数

不同温度下硅酸铝陶瓷板的磨损轨迹深度

图2. 不同温度下硅酸铝陶瓷板的磨损痕迹深度的演变

不同温度下硅酸铝陶瓷板的平均磨损率和磨损轨迹深度是用 NANOVEA 光学剖析器的概述如下 图3.磨损轨迹的深度与使用LVDT记录的深度一致。硅酸铝陶瓷板在800°C时显示出大幅增加的磨损率,约为0.5 mm3/Nm,而在400°C以下的温度下,磨损率低于0.2 mm3/N。硅酸铝陶瓷板在短暂的加热过程后并没有表现出明显增强的机械/三态性能,在热处理之前和之后拥有相当的磨损率。

硅酸铝陶瓷,也被称为熔岩和奇石,在加热处理之前是柔软的,可以加工。在高达1093°C的高温下进行长时间的烧制,可以大幅提高其硬度和强度,之后需要进行钻石加工。这样一个独特的特性使硅酸铝陶瓷成为雕塑的理想材料。

在这项研究中,我们表明,在短时间内以低于烧制所需的温度(800°C对1093°C)进行热处理并不能改善硅酸铝陶瓷的机械和摩擦学特性,这使得适当的烧制成为这种材料在实际应用中使用前的必要过程。

 
不同温度下样品的磨损率和磨损痕迹深度 1

图3. 不同温度下样品的磨损率和磨损轨迹深度

结论

基于本研究的综合摩擦学分析,我们表明,硅酸铝陶瓷板在从室温到800℃的不同温度下表现出相当的摩擦系数。然而,在800°C时,它显示出大幅增加的磨损率,约为0.5 mm3/Nm,显示出对这种陶瓷进行适当热处理的重要性。

NANOVEA摩擦仪能够评估材料在高达1000℃高温下应用的摩擦学特性。原位COF和磨损轨迹深度测量的功能使用户能够将磨损过程的不同阶段与COF的演变联系起来,这对于提高对高温下使用的材料的磨损机制和摩擦学特性的基本认识至关重要。

NANOVEA摩擦仪使用符合ISO和ASTM标准的旋转和线性模式提供精确和可重复的磨损和摩擦测试,并在一个预集成系统中提供可选的高温磨损、润滑和三相腐蚀模块。NANOVEA无与伦比的产品系列是确定薄或厚、软或硬的涂层、薄膜和基材的全部摩擦学特性的理想解决方案。

可选的3D非接触式轮廓仪,除了用于其他表面测量(如粗糙度)外,还可用于磨损轨迹的高分辨率3D成像。

原地磨损测量

现在,让我们来谈谈你的申请