美国/全球:+1-949-461-9292
欧洲。+39-011-3052-794
联系我们

类别。轮廓测量法 | 纹理和颗粒

 

喷丸表面分析

喷丸表面分析

使用 3D 非接触式轮廓仪

编写者

CRAIG LEISING

简介

喷丸是用球形金属、玻璃或陶瓷珠(通常称为“喷丸”)轰击基材的过程,其作用力旨在诱导表面塑性。分析喷丸前后的特征为增强过程理解和控制提供了重要的见解。射击留下的凹痕的表面粗糙度和覆盖面积是特别值得注意的方面。

3D 非接触式轮廓仪对于喷丸表面分析的重要性

与传统上用于喷丸表面分析的传统接触式轮廓仪不同,3D 非接触式测量可提供完整的 3D 图像,从而更全面地了解覆盖区域和表面形貌。如果没有 3D 功能,检查将仅依赖 2D 信息,这不足以表征表面。了解 3D 中的形貌、覆盖区域和粗糙度是控制或改进喷丸过程的最佳方法。纳诺维娅的 3D 非接触式轮廓仪 利用具有独特功能的色光技术来测量机加工和喷丸表面上的陡峭角度。此外,当其他技术由于探头接触、表面变化、角度或反射率而无法提供可靠数据时,NANOVEA 轮廓仪可以成功。

测量目标

在此应用中,NANOVEA ST400 非接触式轮廓仪用于测量原材料和两个不同喷丸表面,以进行比较审查。 3D 表面扫描后可以自动计算出无数的表面参数。在这里,我们将检查 3D 表面并选择感兴趣的区域进行进一步分析,包括量化和研究粗糙度、凹坑和表面积。

NANOVEA

ST400

例子

结果

钢表面

ISO 25178 3D 粗糙度参数

SA 0.399微米 平均粗糙度
规模 0.516微米 均方根粗糙度
5.686微米 最大峰谷值
ǞǞǞ 2.976微米 最大峰值高度
ǞǞǞ 2.711微米 最大凹坑深度
价格 3.9344 峰度
スクリート -0.0113 倾斜度
萨尔 0.0028毫米 自相关长度
斯特 0.0613 纹理纵横比
斯达尔 26.539 平方毫米 表面积
斯沃克 0.589微米 减少谷深
 

结果

喷丸表面 1

表面覆盖率
98.105%

ISO 25178 3D 粗糙度参数

4.102微米 平均粗糙度
规模 5.153微米 均方根粗糙度
44.975微米 最大峰谷值
ǞǞǞ 24.332微米 最大峰值高度
ǞǞǞ 20.644微米 最大凹坑深度
价格 3.0187 峰度
スクリート 0.0625 倾斜度
萨尔 0.0976毫米 自相关长度
斯特 0.9278 纹理纵横比
斯达尔 29.451 平方毫米 表面积
斯沃克 5.008微米 减少谷深

结果

喷丸表面 2

表面覆盖率 97.366%

ISO 25178 3D 粗糙度参数

4.330微米 平均粗糙度
规模 5.455微米 均方根粗糙度
54.013微米 最大峰谷值
ǞǞǞ 25.908微米 最大峰值高度
ǞǞǞ 28.105微米 最大凹坑深度
价格 3.0642 峰度
スクリート 0.1108 倾斜度
萨尔 0.1034毫米 自相关长度
斯特 0.9733 纹理纵横比
斯达尔 29.623 平方毫米 表面积
斯沃克 5.167微米 减少谷深

结论

在此喷丸表面分析应用中,我们演示了 NANOVEA ST400 3D 非接触式轮廓仪如何精确表征喷丸表面的形貌和纳米细节。显然,与原材料相比,表面 1 和表面 2 对此处报告的所有参数都有显着影响。对图像进行简单的目视检查即可发现表面之间的差异。通过观察覆盖区域和列出的参数进一步证实了这一点。与表面 2 相比,表面 1 表现出较低的平均粗糙度 (Sa)、较浅的凹痕 (Sv) 和较小的表面积 (Sdar),但覆盖面积稍高。

通过这些 3D 表面测量,可以轻松识别感兴趣的区域并进行全面的测量,包括粗糙度、光洁度、纹理、形状、形貌、平整度、翘曲、平面度、体积、台阶高度等。可以快速选择二维横截面进行详细分析。该信息允许利用全套表面测量资源对喷丸表面进行全面调查。可以使用集成的 AFM 模块进一步检查感兴趣的特定区域。 NANOVEA 3D 轮廓仪的速度高达 200 毫米/秒。它们可以在尺寸、速度、扫描功能方面进行定制,甚至可以符合 1 级洁净室标准。还提供索引传送带和内联或在线使用集成等选项。

特别感谢国际货币基金组织的 Hayden 先生提供本说明中所示的样本。工业金属表面处理公司| indmetfin.com

涂料表面形态

涂料表面形态

自动实时进化监测
使用纳诺维三维轮廓仪

编写者

李端杰,博士

简介

涂料的保护和装饰特性在汽车、船舶、军事和建筑等多个行业中发挥着重要作用。为了获得理想的性能,如防腐蚀、防紫外线和耐磨性,涂料配方和结构需要经过仔细分析、修改和优化。

三维非接触式轮廓仪对干燥涂料表面形态分析的重要性

油漆通常以液态形式涂刷,并经历一个干燥过程,包括溶剂的蒸发和液态油漆转变为固态漆膜。在干燥过程中,油漆表面会逐渐改变形状和质地。通过使用添加剂来改变涂料的表面张力和流动特性,可以形成不同的表面效果和质感。但是,如果涂料配方不当或表面处理不当,可能会出现不理想的涂料表面失效现象。

在干燥期间对涂料表面形态进行准确的原位监测可以直接了解干燥机理。此外,表面形态的实时演化在各种应用(例如 3D 打印)中是非常有用的信息。纳诺维娅 3D 非接触式轮廓仪 在不接触样品的情况下测量材料的油漆表面形态,避免滑动触笔等接触技术可能导致的任何形状改变。

测量目标

在这一应用中,配备了高速线光学传感器的 NANOVEA ST500 非接触式轮廓仪用于监测涂料在 1 小时干燥期内的表面形态。我们展示了 NANOVEA 非接触式轮廓仪对形状不断变化的材料进行自动实时三维轮廓测量的能力。

NANOVEA

ST500

结果与讨论

将涂料涂抹在金属板表面,然后立即使用配备高速线传感器的 NANOVEA ST500 非接触式轮廓仪对干燥涂料的原位形态演变进行自动测量。宏编程可在特定时间间隔内自动测量和记录三维表面形态:0、5、10、20、30、40、50 和 60 分钟。与手动测试或重复扫描相比,这种自动扫描程序可使用户通过依次运行设定程序来自动执行扫描任务,大大减少了工作量、时间和可能出现的用户错误。事实证明,这种自动化对涉及不同时间间隔多次扫描的长期测量极为有用。

如图 1 所示,光学线条传感器会产生一条由 192 个点组成的亮线。这 192 个光点同时扫描样品表面,大大提高了扫描速度。这可确保快速完成每次三维扫描,避免在每次扫描过程中发生重大表面变化。

图1: 光学线传感器扫描正在干燥的涂料表面。

图 2、图 3 和图 4 分别显示了代表性时间的假色视图、三维视图和干燥油漆形貌的二维剖面图。图像中的假色有助于检测不易辨认的特征。不同的颜色代表样品表面不同区域的高度变化。三维视图为用户提供了从不同角度观察油漆表面的理想工具。在测试的前 30 分钟,油漆表面的假色逐渐从暖色调变为冷色调,表明在此期间高度随时间逐渐降低。这一过程会减慢,正如在 30 分钟和 60 分钟时比较油漆的颜色变化轻微所显示的那样。

样品的平均高度和粗糙度 Sa 值与涂料干燥时间的函数关系如图 5 所示。 表 1 列出了干燥 0、30 和 60 分钟后涂料的完整粗糙度分析。可以看出,在干燥时间的前 30 分钟内,油漆表面的平均高度从 471 微米迅速下降到 329 微米。溶剂汽化的同时,表面纹理也随之形成,导致粗糙度 Sa 值从 7.19 微米增加到 22.6 微米。此后,涂料干燥过程减慢,导致样品高度和 Sa 值逐渐下降,在 60 分钟时分别降至 317 微米和 19.6 微米。

这项研究强调了 NANOVEA 3D 非接触式轮廓仪在实时监测干燥涂料的 3D 表面变化方面的能力,为了解涂料干燥过程提供了宝贵的资料。通过在不接触样品的情况下测量表面形态,轮廓仪避免了滑动测针等接触式技术可能对未干涂料造成的形状改变。这种非接触式方法可确保对干燥涂料表面形态进行准确可靠的分析。

图2: 不同时间干燥涂料表面形态的变化。

图3: 不同干燥时间涂料表面演变的三维视图。

图4: 不同干燥时间后油漆样品的二维剖面图。

图5: 样品平均高度和粗糙度值 Sa 随涂料干燥时间的变化情况。

ISO 25178

干燥时间(分钟) 0 5 10 20 30 40 50 60
平方米(微米) 7.91 9.4 10.8 20.9 22.6 20.6 19.9 19.6
价格 26.3 19.8 14.6 11.9 10.5 9.87 9.83 9.82
Sp (µm) 97.4 105 108 116 125 118 114 112
Sv (µm) 127 70.2 116 164 168 138 130 128
Sz (µm) 224 175 224 280 294 256 244 241
Sa (µm) 4.4 5.44 6.42 12.2 13.3 12.2 11.9 11.8

Sq - 均方根高度 | Sku - 峰度 | Sp - 最大峰高 | Sv - 最大基坑高度 | Sz - 最大高度 | Sv - 算术平均身高

表1: 不同干燥时间的涂料粗糙度。

结论

在这一应用中,我们展示了 NANOVEA ST500 3D 非接触式轮廓仪在监测干燥过程中涂料表面形态演变方面的能力。高速光学线传感器可产生一条由 192 个光点组成的线,同时扫描样品表面,从而在确保无与伦比的精确度的同时提高了研究的时间效率。

采集软件的宏功能可对三维表面形态进行编程自动测量,特别适用于在特定目标时间间隔内进行多次扫描的长期测量。它大大减少了时间、精力和用户出错的可能性。在涂料干燥的过程中,表面形态的渐进变化会被持续监测和实时记录,为了解涂料的干燥机理提供有价值的信息。

此处显示的数据仅代表分析软件中可用计算的一小部分。NANOVEA 轮廓仪几乎能够测量任何表面,无论是透明表面、暗表面、反射表面还是不透明表面。

 

现在,让我们来谈谈你的申请

使用三维轮廓仪分析断裂样品

裂缝分析

使用三维轮廓仪测量

编写者

CRAIG LEISING

简介

断口分析是对断裂表面特征的研究,历史上一直通过显微镜或 SEM 进行研究。根据特征的大小,选择显微镜(宏观特征)或SEM(纳米和微观特征)进行表面分析。两者最终都可以识别断裂机制类型。尽管有效,但显微镜具有明显的局限性,并且在大多数情况下,除了原子级分析之外,SEM 对于断裂表面测量来说是不切实际的,并且缺乏更广泛的使用能力。随着光学测量技术的进步,NANOVEA 3D 非接触式轮廓仪 现在被认为是首选仪器,能够通过宏观尺度 2D 和 3D 表面测量提供纳米级测量

3D非接触式轮廓仪在断裂检测中的重要性

与SEM不同,3D非接触式轮廓仪几乎可以测量任何表面和样品尺寸,只需最少的样品准备,同时提供优于SEM的垂直/水平尺寸。使用轮廓仪,从纳米到宏观范围的特征都可以在一次测量中捕捉到,而样品反射率的影响为零。可以轻松地测量任何材料:透明的、不透明的、镜面的、扩散的、抛光的、粗糙的等等。三维非接触式轮廓仪提供了广泛和用户友好的能力,以SEM的一小部分成本,最大限度地提高表面断裂研究。

测量目标

在这个应用中,NANOVEA ST400被用来测量一个钢铁样品的断裂表面。在这项研究中,我们将展示表面的三维区域、二维轮廓提取和表面方向图。

NANOVEA

ST400

结果

顶部表面

三维表面纹理方向

同向性51.26%
第一方向123.2º
第二方向116.3º
第三方向0.1725º

表面积、体积、粗糙度和许多其他方面都可以从这个提取中自动计算。

二维轮廓提取

结果

侧面

三维表面纹理方向

同向性15.55%
第一方向0.1617º
第二方向110.5º
第三方向171.5º

表面积、体积、粗糙度和许多其他方面都可以从这个提取中自动计算。

二维轮廓提取

结论

在这个应用中,我们展示了NANOVEA ST400 3D非接触式轮廓仪是如何精确表征断裂表面的全部地形(纳米、微观和宏观特征)的。从三维区域中,可以清楚地识别出表面,并且可以快速提取子区域或剖面/横截面,并通过无尽的表面计算列表进行分析。亚纳米级的表面特征可以通过集成的AFM模块进一步分析。

此外,NANOVEA还在其Profilometer阵容中加入了一个便携式版本,这对于不可移动的裂缝表面现场研究来说尤其重要。有了这些广泛的表面测量能力,使用一台仪器进行断裂表面分析从未如此简单和方便。

现在,让我们来谈谈你的申请

三维轮廓仪测量玻璃纤维表面拓扑结构

玻璃纤维表面地形图

使用三维轮廓仪测量

编写者

CRAIG LEISING

简介

玻璃纤维是一种由极细的玻璃纤维制成的材料。它被用作许多聚合物产品的增强剂;由此产生的复合材料,正确地称为纤维增强聚合物(FRP)或玻璃增强塑料(GRP),在流行的用法中被称为 "玻璃纤维"。

表面计量检测对质量控制的重要性

尽管玻璃纤维加固有许多用途,但在大多数应用中,尽可能地提高强度是至关重要的。玻璃纤维复合材料是目前强度与重量比最高的材料之一,在某些情况下,其强度比钢铁还要高。除了高强度外,拥有尽可能小的暴露表面面积也很重要。大面积的玻璃纤维表面会使结构更容易受到化学侵蚀,并可能导致材料膨胀。因此,表面检查对于质量控制生产至关重要。

测量目标

在这个应用中,NANOVEA ST400被用来测量玻璃纤维复合材料表面的粗糙度和平整度。通过量化这些表面特征,有可能创造或优化一个更强大、更持久的玻璃纤维复合材料。

NANOVEA

ST400

测量参数

探测仪 1毫米
购置率300赫兹
平均数1
测量表面5 mm x 2 mm
阶梯尺寸5 µm x 5 µm
扫瞄模式恒定速度

探头规格

测量 范围1毫米
Z决议 25纳米
准确度200纳米
侧向分辨率 2 μm

结果

错误的颜色视图

三维表面平整度

三维表面粗糙度

15.716 μm算术平均高度
规模19.905 μm均方根高度
ǞǞǞ116.74 μm最大峰值高度
ǞǞǞ136.09 μm最大基坑高度
252.83 μm最大高度
スクリート0.556倾斜度
3.654峰度

结论

如结果所示,NANOVEA ST400 Optical 分析器 能够精确测量玻璃纤维复合材料表面的粗糙度和平整度。可以测量多批纤维复合材料和/或给定时间段的数据,以提供有关不同玻璃纤维制造工艺及其随时间变化的反应的重要信息。因此,ST400 是加强玻璃纤维复合材料质量控制过程的可行选择。

现在,让我们来谈谈你的申请

摩擦仪试验机测量聚合物皮带的磨损和摩擦

聚酯带

使用三坐标测量仪的磨损和破损情况

编写者

李端杰,博士

简介

皮带传动装置在两个或多个旋转轴之间传递动力和跟踪相对运动。作为一种简单和廉价的解决方案,维护工作最少,皮带传动被广泛用于各种应用,如电锯、锯木厂、脱粒机、筒仓鼓风机和输送机。皮带传动装置可以保护机械免于过载,也可以阻尼和隔离振动。

磨损评估的重要性 对皮带传动的重要性

摩擦和磨损对于皮带驱动的机器中的皮带来说是不可避免的。足够的摩擦确保有效的动力传输而不打滑,但过度的摩擦可能会迅速磨损皮带。不同类型的磨损,如疲劳、磨损和摩擦,都发生在皮带传动操作中。为了延长皮带的使用寿命,减少皮带维修和更换的成本和时间,可靠地评估皮带的磨损性能对于提高皮带寿命、生产效率和应用性能是可取的。准确测量皮带的摩擦系数和磨损率,有利于研发和皮带生产的质量控制。

测量目标

在这项研究中,我们模拟和比较了具有不同表面纹理的皮带的磨损行为,以展示其能力。 NANOVEA T2000摩擦磨损仪以受控和监测的方式模拟皮带的磨损过程。

NANOVEA

T2000

测试程序

两条具有不同表面粗糙度和纹理的皮带的摩擦系数,COF和耐磨性是通过以下方法评估的 NANOVEA 高负载 摩擦仪 使用线性往复磨损模块。使用钢 440 球(直径 10 毫米)作为计数器材料。使用集成的方法检查表面粗糙度和磨损轨迹 3D 非接触式轮廓仪。磨损率, K使用公式评估 K=Vl(Fxs),其中 V 是磨损的体积。 F 是法向载荷和 s 是滑动距离。

 

请注意,本研究中使用了光滑的钢440球的对应物作为例子,任何具有不同形状和表面处理的固体材料都可以使用定制的夹具来模拟实际应用情况。

结果与讨论

纹理带和光滑带的表面粗糙度Ra分别为33.5和8.7um,根据用显微镜分析的表面轮廓。 NANOVEA 三维非接触式光学剖面仪。分别在10N和100N的条件下测量了两条被测皮带的COF和磨损率,以比较皮带在不同载荷下的磨损行为。

图1 显示了磨损测试期间皮带的COF的演变。具有不同纹理的带子表现出明显不同的磨损行为。有趣的是,在COF逐渐增加的磨合期之后,在使用10N和100N载荷进行的测试中,纹理带的COF达到较低的~0.5。相比之下,在10N载荷下测试的光滑带在COF稳定后表现出明显较高的~1.4的COF,并在测试的其余部分保持在该值以上。在100N载荷下测试的平滑带迅速被钢制440球磨损,并形成一个大的磨损轨迹。因此,测试在220转时被停止。

图1: 不同载荷下皮带的COF的演变。

NANOVEA三维非接触式轮廓仪提供了一个分析磨损痕迹的详细形态的工具,为从根本上理解磨损机制提供了更多的见解。

表1: 磨损轨迹分析的结果。

图2:  两条皮带的三维视图
在100N的测试之后。

如表1所示,三维磨损轨迹剖面可直接和准确地确定先进分析软件计算的磨损轨迹体积。在220转的磨损试验中,平滑带的磨损轨迹更大更深,体积为75.7 mm3,而纹理带在600转的磨损试验后,磨损体积为14.0 mm3。光滑带对钢球的摩擦力明显增大,导致磨损率比有纹路的皮带高15倍。

 

纹理带和光滑带之间如此巨大的COF差异,可能与带子和钢球之间的接触面积大小有关,这也导致了它们不同的磨损性能。图3显示了两种带子在光学显微镜下的磨损痕迹。磨损轨迹检查与COF演变的观察结果一致。纹理带保持着约0.5的低COF,在10N的负载下进行磨损试验后,没有表现出磨损的迹象。光滑带在10N时显示出一个小的磨损轨迹。

图3:  光学显微镜下的磨损痕迹。

结论

在这项研究中,我们展示了NANOVEA T2000摩擦仪在以良好的控制和定量方式评估皮带的摩擦系数和磨损率方面的能力。在皮带的使用性能中,表面纹理对皮带的摩擦和耐磨性起着关键作用。有纹理的皮带表现出稳定的摩擦系数约为0.5,并拥有较长的使用寿命,从而减少了工具维修或更换的时间和成本。相比之下,光滑皮带对钢球的过度摩擦会迅速磨损皮带。此外,皮带上的负载是影响其使用寿命的一个重要因素。过载会产生非常大的摩擦,导致皮带加速磨损。

NANOVEA T2000摩擦仪采用符合ISO和ASTM标准的旋转和线性模式,提供精确和可重复的磨损和摩擦测试,并在一个预集成的系统中提供可选的高温磨损、润滑和摩擦腐蚀模块。 NANOVEA的 无与伦比的产品系列是确定薄或厚、软或硬的涂层、薄膜和基材的全部摩擦学特性的理想解决方案。

现在,让我们来谈谈你的申请

三维轮廓仪测量化石微观结构

化石的微观结构

使用三维轮廓仪测量

编写者

李端杰,博士

简介

化石是埋在古代海洋、湖泊和河流下的沉积物中的植物、动物和其他生物的痕迹的保存遗迹。软体组织通常在死后腐烂,但硬壳、骨骼和牙齿会成为化石。原有的贝壳和骨骼发生矿物替换时,微观结构的表面特征往往被保留下来,这为了解天气的演变和化石的形成机制提供了启示。

3D非接触式轮廓仪在化石检查中的重要性

化石的 3D 剖面使我们能够从更近的角度观察化石样本的详细表面特征。 NANOVEA 轮廓仪的高分辨率和精确度可能是肉眼无法辨别的。轮廓仪的分析软件提供了适用于这些独特表面的广泛研究。与接触式探针等其他技术不同,NANOVEA 3D 非接触式轮廓仪 无需接触样品即可测量表面特征。这样可以保留某些精致化石样本的真实表面特征。此外,便携式Jr25轮廓仪可以对化石遗址进行3D测量,极大地方便了化石挖掘后的分析和保护。

测量目标

在这项研究中,NANOVEA Jr25轮廓仪被用来测量两个有代表性的化石样品的表面。对每个化石的整个表面进行了扫描和分析,以确定其表面特征,包括粗糙度、轮廓和纹理方向。

NANOVEA

小25

腕足类化石

本报告介绍的第一个化石样本是腕足类化石,它来自于一种海洋动物,其上下表面有坚硬的 "瓣"(壳)。它们首次出现在距今5.5亿年前的寒武纪时期。

扫描的三维视图见图1,假彩色视图见图2。 

图1: 腕足类化石样本的三维视图。

图2: 腕足类化石样本的假彩图。

然后将整体形态从表面移除,以研究腕足动物化石的局部表面形态和轮廓,如图3所示。现在可以在腕足动物化石样品上观察到一个奇特的分歧槽纹理。

图3: 去除表格后的假彩色视图和轮廓线视图。

从纹理区域提取线状剖面图,以显示图4中化石表面的横断面图。步高研究测量了表面特征的精确尺寸。凹槽拥有平均宽度约0.38毫米和深度约0.25毫米。

图4: 纹理表面的线条轮廓和阶梯高度研究。

板蓝根茎化石

第二块化石样本是一块甲壳虫茎部化石。甲壳虫首次出现在中寒武纪的海洋中,大约比恐龙早3亿年。 

 

扫描的三维视图见图5,假彩色视图见图6。 

图5: 腕足类化石样本的三维视图。

图7分析了Crinoid茎化石的表面纹理各向异性和粗糙度。 

 该化石在接近90°的角度有一个优先的纹理方向,导致69%的纹理各向同性。

图6: 虚假的彩色视图 缩骨动物茎 采样。

 

图7: 碎石类干化石的表面纹理各向异性和粗糙度。

图8显示了沿Crinoid茎化石的轴向的二维剖面。 

表面纹理的山峰大小相当均匀。

图8: 碎石类干化石的二维剖面分析。

结论

在这个应用中,我们使用NANOVEA Jr25便携式非接触式轮廓仪全面研究了腕足类和腕足类茎化石的三维表面特征。我们展示了该仪器可以精确描述化石样品的三维形态。然后进一步分析了样品有趣的表面特征和纹理。腕足类样品拥有分歧的沟槽纹理,而腕足类茎部化石则显示出优先的纹理各向同性。详细而精确的三维表面扫描被证明是古生物学家和地质学家研究生命进化和化石形成的理想工具。

这里显示的数据只代表了分析软件中的一部分计算结果。NANOVEA轮廓仪几乎可以测量任何领域的表面,包括半导体、微电子、太阳能、光纤、汽车、航空航天、冶金、加工、涂层、制药、生物医学、环境和许多其他领域。

现在,让我们来谈谈你的申请

使用三维轮廓仪测量皮革表面

加工过的皮革

使用三维轮廓仪测量皮革表面

编写者

CRAIG LEISING

简介

一旦皮革的鞣制过程完成,皮革的表面就可以进行若干加工处理,以获得不同的外观和触感。这些机械加工可以包括拉伸、磨光、砂光、压花、涂层等。根据皮革的最终用途,有些可能需要更精确、可控和可重复的加工。

轮廓仪的重要性 用于研发和质量控制

由于目视检测方法差异大且不可靠,能够准确量化微米和纳米尺度特征的工具可以改进皮革涂饰工艺。从量化的角度了解皮革的表面光洁度,可以改进数据驱动的表面加工选择,从而获得最佳的光洁度效果。NANOVEA 3D 非接触式 轮廓仪 NANOVEA 轮廓仪利用色度共焦技术测量皮革成品表面,具有市场上最高的重复性和准确性。由于探头接触、表面变化、角度、吸收或反射等原因,其他技术无法提供可靠的数据,而 NANOVEA 轮廓仪却能做到这一点。

测量目标

在这个应用中,NANOVEA ST400被用来测量和比较两个不同的但紧密加工的皮革样品的表面粗糙度。有几个表面参数是由表面轮廓自动计算出来的。

在这里,我们将重点关注表面粗糙度、窝点深度、窝点间距和窝点直径进行比较评估。

NANOVEA

ST400

结果:样本1

ISO 25178

高度参数

其他3D参数

结果:样本2

ISO 25178

高度参数

其他3D参数

深度比较

每个样品的深度分布。
观察到大量的深凹陷在
示例1.

俯视比较

窝点之间的间距 示例1 略小
示例2,但两者的分布相似

 平均直径比较

凹陷的平均直径分布相似。
示例1 显示平均直径略小。

结论

在这项应用中,我们展示了NANOVEA ST400三维轮廓仪如何精确地描述加工皮革的表面光洁度。在这项研究中,拥有测量表面粗糙度、窝点深度、窝点间距和窝点直径的能力,使我们能够量化两个样品的光洁度和质量之间的差异,这些差异通过目视检查可能并不明显。

总的来说,SAMPLE 1和SAMPLE 2之间的3D扫描的外观没有明显区别。然而,在统计分析中,这两个样品之间有明显的区别。与SAMPLE 2相比,SAMPLE 1含有更多直径较小、深度较大、窝点与窝点之间间距较小的窝点。

请注意,还可以进行更多的研究。特别感兴趣的领域可以通过集成AFM或显微镜模块进一步分析。NANOVEA 3D轮廓仪的速度范围从20毫米/秒到1米/秒,用于实验室或研究,以满足高速检测的需要;可以定制尺寸、速度、扫描能力、符合1级洁净室标准、索引传送带或用于在线或在线集成。

现在,让我们来谈谈你的申请

使用便携式三维轮廓仪的有机表面拓扑图

有机表面的地形

使用便携式三维轮廓仪

编写者

CRAIG LEISING

简介

大自然已经成为改进表面结构发展的重要灵感源泉。对自然界中发现的表面结构的了解导致了基于壁虎脚的粘附性研究,基于海参结构变化的耐药性研究,以及基于树叶的排斥性研究,等等。这些表面有许多潜在的应用,从生物医学到服装和汽车。要想取得这些表面上的突破,必须发展制造技术,使表面特征能够被模仿和复制。这一过程需要识别和控制。

便携式三维非接触式光学轮廓仪对有机表面的重要性

NANOVEA Jr25 便携式产品采用 Chromatic Light 技术 光学轮廓仪 具有测量几乎任何材料的卓越能力。这包括在自然界广泛的表面特征中发现的独特且陡峭的角度、反射和吸收表面。 3D 非接触式测量提供完整的 3D 图像,以便更全面地了解表面特征。如果没有 3D 功能,自然表面的识别将仅依赖于 2D 信息或显微镜成像,而这无法提供足够的信息来正确模拟所研究的表面。了解全面的表面特征,包括纹理、形状、尺寸等,对于成功制造至关重要。

在现场轻松获得实验室质量的结果的能力,为新的研究机会打开了大门。

测量目标

在这个应用中, NANOVEA Jr25是用来测量叶片的表面。有一个无穷无尽的表面参数列表,可以在三维表面扫描后自动计算。

在这里,我们将审查三维表面并选择
要进一步分析的感兴趣的领域,包括
量化和调查表面粗糙度、通道和地形情况

NANOVEA

JR25

测试条件

皱纹深度

沟壑的平均密度。16.471 cm/cm2
沟壑平均深度:97.428 μm
沟壑最大深度: 359.769 μm

结论

在这个应用中,我们已经展示了如何 NANOVEA Jr25便携式三维非接触式光学轮廓仪可以在现场精确地描述叶子表面的地形和纳米级的细节。从这些三维表面测量结果中,可以迅速确定感兴趣的区域,然后用无尽的研究清单进行分析(尺寸,粗糙度完成的纹理,形状形式地形,平整度翘曲度平面度,体积面积,阶梯高度 和其他)。可以很容易地选择一个二维截面来分析进一步的细节。有了这些信息,就可以用一套完整的表面测量资源对有机表面进行广泛调查。特别感兴趣的领域可以通过桌面模型上的集成AFM模块进一步分析。

NANOVEA 还提供用于现场研究的便携式高速轮廓仪和各种基于实验室的系统,并提供实验室服务。

现在,让我们来谈谈你的申请

砂纸粗糙度轮廓仪

砂纸:粗糙度和颗粒直径分析

砂纸。粗糙度和颗粒直径分析

了解更多

砂纸

粗糙度和粒径分析

编写者

刘志强

简介

砂纸是一种常见的商业化产品,用作磨料。砂纸最常见的用途是去除涂层或利用其磨蚀性对表面进行抛光。这些磨料特性被分为不同的等级,每一种等级都与光滑程度和质量有关。
砂纸的表面粗糙度。为了达到理想的磨料特性,砂纸制造商必须确保磨料颗粒具有特定的尺寸,并且偏差很小。为了量化砂纸的质量,NANOVEA的3D非接触式 轮廓仪 可用于获得样品区域的算术平均(Sa)高度参数和平均颗粒直径。

3D非接触式光学轮廓仪的重要性 砂纸轮廓仪

使用砂纸时,磨料颗粒与被砂表面的相互作用必须均匀,才能获得一致的表面光洁度。为了量化这一点,可以使用NANOVEA的3D非接触式光学剖面仪观察砂纸的表面,以查看颗粒大小、高度和间距的偏差。

测量目标

在这项研究中,五种不同的砂纸粒度(120。
180、320、800和2000)的扫描。
NANOVEA ST400 3D非接触式光学轮廓仪。
从扫描中提取出Sa,并将粒子
规模是通过进行Motifs分析来计算的。
找到它们的等效直径

NANOVEA

ST400

结果与讨论

砂纸的表面粗糙度(Sa)和颗粒尺寸随着砂砾的增加而减小,如预期的那样。Sa范围为42.37 ~ 3.639 μm。粒径范围为127±48.7 ~ 21.27±8.35。与高度变化较小的颗粒相比,较大的颗粒和高度变化较大的颗粒对表面产生更强的研磨作用。
请注意所有给定高度参数的定义都列在第A.1页。

表1: 砂纸粒度和高度参数的比较。

表2: 砂纸等级和颗粒直径的比较。

砂纸的2D和3D视图 

下面是砂纸样品的假色和三维视图。
使用0.8毫米的高斯滤波器来消除形状或波浪。

动机分析

为了准确地找到表面的颗粒,重新定义了高度比例阈值,只显示砂纸的上层。然后进行图案分析来检测峰值。

结论

NANOVEA公司的3D非接触式光学轮廓仪能够精确扫描具有微纳米特征的表面,因此被用于检测各种砂纸磨粒的表面特性。

使用先进的软件分析三维扫描,获得了每个砂纸样品的表面高度参数和等效颗粒直径。据观察,随着砂粒大小的增加,表面粗糙度(Sa)和颗粒大小如预期的那样下降。

现在,让我们来谈谈你的申请

保丽龙表面边界测量轮廓仪

表面边界测量

使用三维轮廓测量法的表面边界测量

了解更多

表面边界测量

使用三维轮廓仪测量

编写者

克雷格-莱辛

简介

在对表面特征、图案、形状等的界面进行方位评估的研究中,快速确定整个测量剖面上的关注区域将是非常有用的。通过将一个表面分割成重要的区域,用户可以快速评估边界、峰值、凹点、面积、体积和许多其他方面,以了解它们在整个研究的表面轮廓中的功能作用。例如,像金属的晶界成像,分析的重要性是许多结构的界面和它们的整体方向。通过了解每个感兴趣的区域的缺陷和或整体区域内的异常可以被识别。尽管晶界成像通常是在超过Profilometer能力的范围内进行研究,而且只是二维图像分析,但它是一个有用的参考,说明这里将在更大范围内显示的概念以及三维表面测量的优势。

3D非接触式轮廓仪对表面分离研究的重要性

与接触式探针或干涉测量等其他技术不同, 3D 非接触式轮廓仪使用轴向色差,可以测量几乎任何表面,由于开放式分级,样品尺寸可能变化很大,并且不需要样品制备。在表面轮廓测量过程中获得纳米到宏观范围,样品反射率或吸收的影响为零,具有测量高表面角度的先进能力,并且无需软件对结果进行操作。轻松测量任何材料:透明、不透明、镜面、漫射、抛光、粗糙等。非接触式轮廓仪技术提供了理想、广泛且用户友好的功能,可在需要表面边界分析时最大限度地进行表面研究;以及 2D 和 3D 组合功能的优势。

测量目标

在这个应用中,Nanovea ST400轮廓仪被用来测量泡沫聚苯乙烯的表面积。通过结合反射强度文件和地形来建立边界,这些文件由NANOVEA ST400同时获取。这些数据被用来计算每个聚苯乙烯泡沫“颗粒”的不同形状和大小信息。

NANOVEA

ST400

结果与讨论:二维表面边界测量

地形图(下图左)被反射强度图(下图右)所掩盖,以明确界定晶粒的边界。所有直径在565微米以下的晶粒都通过应用过滤器被忽略了。

谷物总数。167
谷物所占的总投影面积。166.917 mm² (64.5962 %)
边界所占的预计总面积:(35.4038 %)
谷物的密度。0.646285粒/平方毫米

面积 = 0.999500 mm² +/- 0.491846 mm²
周长 = 9114.15 µm +/- 4570.38 µm
等效直径=1098.61 µm +/- 256.235 µm
平均直径=945.373µm +/- 248.344 µm
最小直径 = 675.898 µm +/- 246.850 µm
最大直径 = 1312.43 µm +/- 295.258 µm

结果与讨论:三维表面边界测量

通过使用获得的三维地形数据,可以分析每个晶粒的体积、高度、峰值、长宽比和一般形状信息。占用的总三维面积:2.525mm3

结论

在这个应用中,我们展示了NANOVEA 3D非接触式轮廓仪如何精确地表征聚苯乙烯泡沫塑料的表面。统计信息可以在整个感兴趣的表面或单个晶粒上获得,无论它们是峰值还是凹坑。在这个例子中,所有大于用户定义尺寸的晶粒被用来显示面积、周长、直径和高度。这里显示的特征对天然和预制表面的研究和质量控制至关重要,范围包括生物医学和微加工应用以及许多其他应用。 

现在,让我们来谈谈你的申请