美国/全球:+1-949-461-9292
欧洲。+39-011-3052-794
联系我们

类别。轮廓测量法 | 平面度和翘曲度

 

使用三维轮廓仪进行粗糙度测绘检测

粗糙度测绘检查

使用三维轮廓仪测量

编写者

杜安杰,博士

简介

表面粗糙度和纹理是影响产品最终质量和性能的关键因素。对表面粗糙度、质地和一致性的全面了解对于选择最佳的加工和控制措施至关重要。需要对产品表面进行快速、可量化和可靠的在线检测,以便及时发现有缺陷的产品并优化生产线条件。

3D非接触式轮廓仪对在线表面检测的重要性

产品的表面缺陷是由材料加工和产品制造造成的。在线表面质量检测可确保对最终产品进行最严格的质量控制。纳诺维娅 3D 非接触式光学轮廓仪 利用具有独特功能的色光技术,无需接触即可确定样品的粗糙度。线传感器能够高速扫描大表面的 3D 轮廓。由分析软件实时计算的粗糙度阈值可作为快速可靠的通过/失败工具。

测量目标

在这项研究中,NANOVEA ST400配备了一个高速传感器,用于检测有缺陷的Teflon样品的表面,以展示NANOVEA的能力。

非接触式测厚仪在生产线上提供快速和可靠的表面检测。

NANOVEA

ST400

结果与讨论

三维表面分析 粗糙度标准样品

使用配备了高速传感器的NANOVEA ST400扫描粗糙度标准件的表面,该传感器产生了192个点的亮线,如图1所示。这192个点同时扫描样品表面,导致扫描速度大大增加。

图2显示了粗糙度标准样品的表面高度图和粗糙度分布图的假彩色视图。在图2a中,粗糙度标准样品表现出略微倾斜的表面,如每个标准粗糙度块中不同的颜色梯度所代表的那样。在图2b中,均匀的粗糙度分布显示在不同的粗糙度块中,其颜色代表了块中的粗糙度。

图3显示了分析软件根据不同的粗糙度阈值生成的合格/不合格图的例子。当表面粗糙度高于某个设定的阈值时,粗糙度区块会以红色显示。这为用户提供了一个工具,可以设置一个粗糙度阈值来确定样品的表面质量。

图1: 粗糙度标准样品上的光学线传感器扫描

a. 地表高度图:

b. 粗糙度图:

图2: 粗糙度标准样品的表面高度图和粗糙度分布图的假彩色视图。

图3: 基于粗糙度阈值的通过/失败图。

有缺陷的天线样品的表面检查

Teflon样品表面的表面高度图、粗糙度分布图和合格/不合格粗糙度阈值图显示在图4。如表面高度图所示,Teflon样品在样品的右侧中心有一个山脊的形式。

a. 地表高度图:

图4b的调色板上的不同颜色代表了局部表面的粗糙度值。粗糙度图显示了Teflon样品完整区域内的均匀粗糙度。然而,缺陷,以缩进环和磨损疤痕的形式,以明亮的颜色突出。用户可以很容易地设置一个通过/失败的粗糙度阈值来定位表面缺陷,如图4c所示。这样的工具允许用户在生产线上现场监测产品的表面质量,及时发现有缺陷的产品。当产品经过在线光学传感器时,实时的粗糙度值被计算和记录下来,这可以作为一个快速而可靠的质量控制工具。

b. 粗糙度图:

c. 通过/失败 粗糙度阈值图:

图4: 表面高度图、粗糙度分布图和 Teflon样品表面的通过/失败粗糙度阈值图。

结论

在这个应用中,我们展示了NANOVEA ST400 3D非接触式光学轮廓仪配备的光学线传感器是如何以一种有效和高效的方式作为可靠的质量控制工具。

光学线传感器产生一条由192个点组成的亮线,同时扫描样品表面,导致扫描速度显著提高。它可以安装在生产线上,就地监测产品的表面粗糙度。粗糙度阈值作为确定产品表面质量的可靠标准,使用户能够及时发现有缺陷的产品。

这里显示的数据只代表了分析软件中的一部分计算结果。NANOVEA轮廓仪几乎可以测量任何领域的表面,包括半导体、微电子、太阳能、光纤、汽车、航空航天、冶金、加工、涂层、制药、生物医学、环境和许多其他领域。

现在,让我们来谈谈你的申请

便携式三维轮廓仪测量焊缝表面

焊接表面检查

使用便携式三维轮廓仪

编写者

CRAIG LEISING

简介

对于通常通过目视检查完成的特定焊缝,以极高的精度进行调查可能变得至关重要。焊缝精确分析包括表面裂纹、孔隙和未填充的凹坑。焊缝特征,如尺寸/形状、体积、粗糙度、尺寸等,都可以进行测量,都是焊缝评估的关键参数。

3D非接触式轮廓仪在焊接表面检测中的重要性

与接触式探针或干涉测量等其他技术不同,NANOVEA 3D 非接触式轮廓仪使用轴向色差,几乎可以测量任何表面,由于开放式分级,样品尺寸可能变化很大,并且不需要样品制备。在表面轮廓测量过程中获得从纳米到宏观的范围,样品反射率或吸收的影响为零,具有测量高表面角度的先进能力,并且无需软件对结果进行操作。轻松测量任何材料:透明、不透明、镜面、漫射、抛光、粗糙等。NANOVEA 便携式轮廓仪的 2D 和 2D 功能使其成为实验室和现场全面焊接表面检测的理想仪器。

测量目标

在这个应用中,NANOVEA JR25便携式轮廓仪被用来测量焊缝的表面粗糙度、形状和体积,以及周围区域。这些信息可以提供关键的信息,以正确评估焊接和焊接过程的质量。

NANOVEA

JR25

测试结果

下面的图片显示了焊缝和周围区域的完整的三维视图,以及只显示焊缝的表面参数。下面显示的是二维截面剖面图。

样本

从三维图中提取二维剖面,焊缝的尺寸信息计算如下。下面只计算焊缝的表面积和材料的体积。

 洞口PEAK
表面1.01毫米214.0毫米2
体积8.799e-5 mm323.27毫米3
最大深度/高度0.0276毫米0.6195毫米
平均深度/高度 0.004024毫米 0.2298毫米

结论

在这个应用中,我们展示了NANOVEA 3D非接触式轮廓仪如何精确地表征焊缝和周围表面区域的关键特性。从粗糙度、尺寸和体积,可以确定质量和可重复性的定量方法,或进一步研究。样品焊缝,如本应用说明中的例子,可以很容易地进行分析,用标准的台式或便携式NANOVEA轮廓仪进行内部或现场测试。

现在,让我们来谈谈你的申请

三维轮廓仪测量玻璃纤维表面拓扑结构

玻璃纤维表面地形图

使用三维轮廓仪测量

编写者

CRAIG LEISING

简介

玻璃纤维是一种由极细的玻璃纤维制成的材料。它被用作许多聚合物产品的增强剂;由此产生的复合材料,正确地称为纤维增强聚合物(FRP)或玻璃增强塑料(GRP),在流行的用法中被称为 "玻璃纤维"。

表面计量检测对质量控制的重要性

尽管玻璃纤维加固有许多用途,但在大多数应用中,尽可能地提高强度是至关重要的。玻璃纤维复合材料是目前强度与重量比最高的材料之一,在某些情况下,其强度比钢铁还要高。除了高强度外,拥有尽可能小的暴露表面面积也很重要。大面积的玻璃纤维表面会使结构更容易受到化学侵蚀,并可能导致材料膨胀。因此,表面检查对于质量控制生产至关重要。

测量目标

在这个应用中,NANOVEA ST400被用来测量玻璃纤维复合材料表面的粗糙度和平整度。通过量化这些表面特征,有可能创造或优化一个更强大、更持久的玻璃纤维复合材料。

NANOVEA

ST400

测量参数

探测仪 1毫米
购置率300赫兹
平均数1
测量表面5 mm x 2 mm
阶梯尺寸5 µm x 5 µm
扫瞄模式恒定速度

探头规格

测量 范围1毫米
Z决议 25纳米
准确度200纳米
侧向分辨率 2 μm

结果

错误的颜色视图

三维表面平整度

三维表面粗糙度

15.716 μm算术平均高度
规模19.905 μm均方根高度
ǞǞǞ116.74 μm最大峰值高度
ǞǞǞ136.09 μm最大基坑高度
252.83 μm最大高度
スクリート0.556倾斜度
3.654峰度

结论

如结果所示,NANOVEA ST400 Optical 分析器 能够精确测量玻璃纤维复合材料表面的粗糙度和平整度。可以测量多批纤维复合材料和/或给定时间段的数据,以提供有关不同玻璃纤维制造工艺及其随时间变化的反应的重要信息。因此,ST400 是加强玻璃纤维复合材料质量控制过程的可行选择。

现在,让我们来谈谈你的申请

使用三维轮廓仪测量皮革表面

加工过的皮革

使用三维轮廓仪测量皮革表面

编写者

CRAIG LEISING

简介

一旦皮革的鞣制过程完成,皮革的表面就可以进行若干加工处理,以获得不同的外观和触感。这些机械加工可以包括拉伸、磨光、砂光、压花、涂层等。根据皮革的最终用途,有些可能需要更精确、可控和可重复的加工。

轮廓仪的重要性 用于研发和质量控制

由于目视检测方法差异大且不可靠,能够准确量化微米和纳米尺度特征的工具可以改进皮革涂饰工艺。从量化的角度了解皮革的表面光洁度,可以改进数据驱动的表面加工选择,从而获得最佳的光洁度效果。NANOVEA 3D 非接触式 轮廓仪 NANOVEA 轮廓仪利用色度共焦技术测量皮革成品表面,具有市场上最高的重复性和准确性。由于探头接触、表面变化、角度、吸收或反射等原因,其他技术无法提供可靠的数据,而 NANOVEA 轮廓仪却能做到这一点。

测量目标

在这个应用中,NANOVEA ST400被用来测量和比较两个不同的但紧密加工的皮革样品的表面粗糙度。有几个表面参数是由表面轮廓自动计算出来的。

在这里,我们将重点关注表面粗糙度、窝点深度、窝点间距和窝点直径进行比较评估。

NANOVEA

ST400

结果:样本1

ISO 25178

高度参数

其他3D参数

结果:样本2

ISO 25178

高度参数

其他3D参数

深度比较

每个样品的深度分布。
观察到大量的深凹陷在
示例1.

俯视比较

窝点之间的间距 示例1 略小
示例2,但两者的分布相似

 平均直径比较

凹陷的平均直径分布相似。
示例1 显示平均直径略小。

结论

在这项应用中,我们展示了NANOVEA ST400三维轮廓仪如何精确地描述加工皮革的表面光洁度。在这项研究中,拥有测量表面粗糙度、窝点深度、窝点间距和窝点直径的能力,使我们能够量化两个样品的光洁度和质量之间的差异,这些差异通过目视检查可能并不明显。

总的来说,SAMPLE 1和SAMPLE 2之间的3D扫描的外观没有明显区别。然而,在统计分析中,这两个样品之间有明显的区别。与SAMPLE 2相比,SAMPLE 1含有更多直径较小、深度较大、窝点与窝点之间间距较小的窝点。

请注意,还可以进行更多的研究。特别感兴趣的领域可以通过集成AFM或显微镜模块进一步分析。NANOVEA 3D轮廓仪的速度范围从20毫米/秒到1米/秒,用于实验室或研究,以满足高速检测的需要;可以定制尺寸、速度、扫描能力、符合1级洁净室标准、索引传送带或用于在线或在线集成。

现在,让我们来谈谈你的申请

使用便携式三维轮廓仪的有机表面拓扑图

有机表面的地形

使用便携式三维轮廓仪

编写者

CRAIG LEISING

简介

大自然已经成为改进表面结构发展的重要灵感源泉。对自然界中发现的表面结构的了解导致了基于壁虎脚的粘附性研究,基于海参结构变化的耐药性研究,以及基于树叶的排斥性研究,等等。这些表面有许多潜在的应用,从生物医学到服装和汽车。要想取得这些表面上的突破,必须发展制造技术,使表面特征能够被模仿和复制。这一过程需要识别和控制。

便携式三维非接触式光学轮廓仪对有机表面的重要性

NANOVEA Jr25 便携式产品采用 Chromatic Light 技术 光学轮廓仪 具有测量几乎任何材料的卓越能力。这包括在自然界广泛的表面特征中发现的独特且陡峭的角度、反射和吸收表面。 3D 非接触式测量提供完整的 3D 图像,以便更全面地了解表面特征。如果没有 3D 功能,自然表面的识别将仅依赖于 2D 信息或显微镜成像,而这无法提供足够的信息来正确模拟所研究的表面。了解全面的表面特征,包括纹理、形状、尺寸等,对于成功制造至关重要。

在现场轻松获得实验室质量的结果的能力,为新的研究机会打开了大门。

测量目标

在这个应用中, NANOVEA Jr25是用来测量叶片的表面。有一个无穷无尽的表面参数列表,可以在三维表面扫描后自动计算。

在这里,我们将审查三维表面并选择
要进一步分析的感兴趣的领域,包括
量化和调查表面粗糙度、通道和地形情况

NANOVEA

JR25

测试条件

皱纹深度

沟壑的平均密度。16.471 cm/cm2
沟壑平均深度:97.428 μm
沟壑最大深度: 359.769 μm

结论

在这个应用中,我们已经展示了如何 NANOVEA Jr25便携式三维非接触式光学轮廓仪可以在现场精确地描述叶子表面的地形和纳米级的细节。从这些三维表面测量结果中,可以迅速确定感兴趣的区域,然后用无尽的研究清单进行分析(尺寸,粗糙度完成的纹理,形状形式地形,平整度翘曲度平面度,体积面积,阶梯高度 和其他)。可以很容易地选择一个二维截面来分析进一步的细节。有了这些信息,就可以用一套完整的表面测量资源对有机表面进行广泛调查。特别感兴趣的领域可以通过桌面模型上的集成AFM模块进一步分析。

NANOVEA 还提供用于现场研究的便携式高速轮廓仪和各种基于实验室的系统,并提供实验室服务。

现在,让我们来谈谈你的申请

菲涅尔透镜拓扑图

新鲜透镜

使用三维轮廓仪测量尺寸

编写者

李端杰和Benjamin Mell

简介

透镜是一种轴对称的光学装置,用来传输和折射光线。一个简单的透镜由单一的光学元件组成,用于收敛或发散光线。尽管球形表面并不是制作透镜的理想形状,但它们通常被用作玻璃研磨和抛光后最简单的形状。

菲涅尔透镜由一系列同心环组成,这些环是简单透镜的薄部分,宽度只有千分之几英寸。与具有相同光学性能的传统透镜相比,菲涅尔透镜孔径大,焦距短,设计紧凑,减少了所需材料的重量和体积。由于菲涅尔透镜的薄几何结构,很少的光由于吸收而丢失。

3D非接触式轮廓测量法在菲涅尔透镜检查中的重要性

菲涅尔透镜广泛应用于汽车工业、灯塔、太阳能和航空母舰的光学着陆系统。用透明塑料模制或冲压透镜可以提高其生产成本效益。菲涅尔透镜的使用质量主要取决于其同心环的精度和表面质量。与接触式探针技术不同,NANOVEA 光学轮廓仪 在不接触表面的情况下执行 3D 表面测量,避免产生新划痕的风险。色光技术非常适合精确扫描复杂形状,例如不同几何形状的镜片。

菲涅尔透镜原理图

透明塑料菲涅尔透镜可以通过成型或冲压制造。准确和有效的质量控制对于揭示有缺陷的生产模具或冲压件至关重要。通过测量同心环的高度和间距,将测量值与透镜制造商给出的规格值进行比较,可以发现生产的变化。

对镜片轮廓的精确测量可确保模具或印章被正确加工以符合制造商的规格。此外,印章可能随着时间的推移而逐渐磨损,导致其失去最初的形状。持续偏离镜片制造商的规格是一个积极的迹象,表明需要更换模具。

测量目标

在这个应用中,我们展示了NANOVEA ST400,一个带有高速传感器的3D非接触式轮廓仪,为复杂形状的光学元件提供全面的3D轮廓分析。为了证明我们的色光技术的卓越能力,轮廓分析是在菲涅尔透镜上进行。

NANOVEA

ST400

本研究使用的2.3" x 2.3" 亚克力菲涅尔透镜包括 

一系列的同心环和复杂的锯齿状横截面轮廓。 

它有一个1.5英寸的焦距,2.0英寸的有效尺寸直径。 

每英寸有125条沟,折射率为1.49。

菲涅尔透镜的NANOVEA ST400扫描显示,同心环的高度明显增加,从中心向外移动。

2D FALSE COLOR

高度代表

3D视图

剖析

巅峰与谷底

剖面图的尺寸分析

结论

在这个应用中,我们展示了NANOVEA ST400非接触式光学轮廓仪精确测量菲涅尔透镜的表面形貌。 

使用NANOVEA分析软件,可以从复杂的锯齿状轮廓准确地确定高度和间距的尺寸。用户可以通过比较制造的镜片的环高和节距尺寸与理想的环规格,有效地检查生产模具或印章的质量。

这里显示的数据仅代表分析软件中可用的一部分计算结果。 

NANOVEA光学轮廓仪几乎可以测量任何领域的表面,包括半导体、微电子、太阳能、光纤、汽车、航空航天、冶金、加工、涂层、制药、生物医学、环境和许多其他领域。

 

现在,让我们来谈谈你的申请

机加工零件质量控制

机加工零件检查

机械零件

使用三维轮廓测量法根据CAD模型进行检测

作者。

李端杰,博士

订正

Jocelyn Esparza

用轮廓仪检测机械加工件

简介

各个行业对能够创造复杂几何形状的精密加工的需求一直在上升。从航空航天、医疗和汽车,到科技齿轮、机械和乐器,不断的创新和演变将期望和精度标准推向新的高度。因此,我们看到对严格的检测技术和仪器的需求上升,以确保产品的最高质量。

三维非接触式轮廓仪在零件检测中的重要性

将加工好的零件的属性与它们的CAD模型进行比较,对于验证公差和对生产标准的遵守是至关重要的。在服务期间的检查也是至关重要的,因为零件的磨损可能需要更换。及时发现任何偏离所需规格的情况将有助于避免昂贵的维修、生产停顿和声誉受损。

与接触式探针技术不同,NANOVEA 光学轮廓仪 以零接触方式执行 3D 表面扫描,从而以最高精度快速、精确、无损地测量复杂形状。

测量目标

在这个应用中,我们展示了NANOVEA HS2000,一个带有高速传感器的三维非接触式轮廓仪,进行尺寸、半径和粗糙度的全面表面检测。 

所有这些都在40秒内完成。

NANOVEA

HS2000

CAD模型

对加工件的尺寸和表面粗糙度的精确测量对于确保其符合所需的规格、公差和表面光洁度至关重要。下面是要检测的零件的三维模型和工程图。 

错误的颜色视图

CAD模型的假彩色视图和扫描的加工零件表面在图3中进行了比较。 样品表面的高度变化可以通过颜色的变化来观察。

如图2所示,从三维表面扫描中提取三个二维轮廓,以进一步验证加工件的尺寸公差。

概况比较和结果

图3至图5中显示了轮廓1至3。通过将测量的轮廓与CAD模型进行比较来进行定量公差检查,以维护严格的制造标准。轮廓1和轮廓2测量弯曲加工件上不同区域的半径。轮廓2的高度变化在156毫米的长度上为30微米,符合所需的±125微米的公差要求。 

通过设置公差限值,分析软件可以自动确定加工件的合格或不合格。

用轮廓仪检测机器零件

被加工零件表面的粗糙度和均匀性对保证其质量和功能起着重要作用。图6是从被加工零件的母扫描中提取的表面积,用于量化表面光洁度。平均表面粗糙度(Sa)为2.31 μ m。

结论

在这项研究中,我们展示了配备了高速传感器的NANOVEA HS2000非接触式轮廓仪是如何进行尺寸和粗糙度的全面表面检测的。 

高分辨率扫描使用户能够测量加工零件的详细形态和表面特征,并将其与CAD模型进行定量比较。该仪器还能够检测到任何缺陷,包括划痕和裂纹。 

先进的轮廓分析作为一个无与伦比的工具,不仅可以确定加工的零件是否满足设定的规格,还可以评估磨损部件的故障机制。

这里显示的数据只代表了每个NANOVEA光学剖面仪所配备的高级分析软件所能进行的部分计算。

 

现在,让我们来谈谈你的申请

在线粗糙度检查

使用在线分析器的即时错误检测

了解更多

非接触式轮廓仪对在线粗糙度检测的重要性

表面缺陷来源于材料加工和产品制造。在线表面质量检测可确保对最终产品进行最严格的质量控制。纳诺维亚酒店 3D 非接触式轮廓仪 利用具有独特功能的彩色共焦技术,无需接触即可确定样品的粗糙度。可安装多个轮廓仪传感器,同时监测产品不同区域的粗糙度和纹理。由分析软件实时计算的粗糙度阈值可作为快速可靠的通过/失败工具。

测量目标

在这项研究中,Nanovea粗糙度检测传送系统配备了一个点式传感器,用于检测丙烯酸和砂纸样品的表面粗糙度。我们展示了Nanovea非接触式轮廓仪在生产线上实时提供快速、可靠的在线粗糙度检测的能力。

结果和讨论

输送式轮廓仪系统可以在两种模式下工作,即触发模式和连续模式。如图2所示,在触发模式下,当样品在光学轮廓仪头下通过时,样品的表面粗糙度被测量。相比之下,连续模式可以不间断地测量连续样品的表面粗糙度,如金属板和织物。可以安装多个光学轮廓仪传感器来监测和记录不同样品区域的粗糙度。

 

在实时粗糙度检测测量过程中,软件窗口显示通过和失败告警,如图4和图5所示。当粗糙度值在给定的阈值内时,测量的粗糙度以绿色突出显示。然而,当测量的表面粗糙度超出设定的阈值范围时,高亮部分变成红色。这为用户提供了一个工具来确定产品表面光洁度的质量。

在下面的章节中,将使用两种类型的样品,如丙烯酸和砂纸来演示检测系统的触发和连续模式。

触发模式。亚克力样品的表面检查

如图1所示,一系列亚克力样品在传送带上排列并在光学轮廓仪头下移动。图6中的假彩色视图显示了表面高度的变化。如图6b所示,一些镜子般的成品亚克力样品已经被打磨,形成了粗糙的表面纹理。

当亚克力样品在光学轮廓仪头下以恒定的速度移动时,表面轮廓被测量,如图7和图8所示。同时计算出所测轮廓的粗糙度值,并与阈值进行比较。当粗糙度值超过设定的阈值时,就会启动红色故障警报,使用户能够立即发现并找到生产线上的缺陷产品。

连续模式。砂纸样品的表面检查

如图9所示,砂纸样品表面的表面高度图、粗糙度分布图和合格/不合格粗糙度阈值图。如表面高度图所示,砂纸样品在使用的部分有几个较高的峰值。图9C的调色板上的不同颜色代表了局部表面的粗糙度值。粗糙度图在砂纸样品的完整区域表现出均匀的粗糙度,而使用过的区域则以深蓝色突出显示,表明该区域的粗糙度值降低。可以设置一个合格/不合格的粗糙度阈值来定位这样的区域,如图9D所示。

当砂纸连续通过在线轮廓仪传感器下方时,实时的局部粗糙度值被计算和记录,如图10所示。根据设定的粗糙度阈值,在软件屏幕上显示合格/不合格警报,作为质量控制的一个快速和可靠的工具。对生产线上的产品表面质量进行现场检查,及时发现有缺陷的地方。

结论

在这个应用中,我们已经证明了Nanovea传送带轮廓仪配备的光学非接触式轮廓仪传感器可以作为一个可靠的在线质量控制工具有效和高效地工作。

该检测系统可以安装在生产线上,就地监测产品的表面质量。粗糙度阈值作为判断产品表面质量的可靠标准,使用户能够及时发现有缺陷的产品。提供两种检测模式,即触发模式和连续模式,以满足对不同类型产品的检测要求。

这里显示的数据只代表了分析软件中的一部分计算结果。Nanovea轮廓仪几乎可以测量任何领域的表面,包括半导体、微电子、太阳能、纤维、光学、汽车、航空航天、冶金、加工、涂层、制药、生物医学、环境和其他许多领域。

现在,让我们来谈谈你的申请

用非接触式轮廓仪对硬币的三维表面进行分析

非接触式轮廓测量法对钱币的重要性

货币在现代社会中具有很高的价值,因为它可以用来交换商品和服务。硬币和纸币在许多人的手中流通。实物货币的不断转移会造成表面变形。纳诺维亚的 3D 轮廓仪 扫描不同年份铸造的硬币的地形,以研究表面差异。

硬币特征很容易为公众所识别,因为它们是常见的物体。花一分钱就能了解 Nanovea 高级表面分析软件的优势:Mountains 3D。使用我们的 3D 轮廓仪收集的表面数据可以通过表面减法和 2D 轮廓提取对复杂的几何形状进行高级分析。使用受控掩模、印模或模具进行表面减法可比较制造工艺的质量,而轮廓提取可通过尺寸分析来识别公差。 Nanovea 的 3D 轮廓仪和 Mountains 3D 软件可研究看似简单物体(如便士)的亚微米形貌。



测量目标

使用Nanovea公司的高速线传感器扫描了五枚硬币的整个上表面。每枚硬币的内外半径都是用Mountains高级分析软件测量的。从感兴趣区域的每个硬币表面提取直接表面减法量化表面变形。

 



结果和讨论

三维表面

Nanovea HS2000轮廓仪仅用24秒就扫描了一个20mm x 20mm区域的400万个点,步长为10um x 10um,获得了一枚硬币的表面。下面是扫描的高度图和3D可视化图。3D视图显示了高速传感器捕捉肉眼无法察觉的小细节的能力。硬币表面有许多细小的划痕。研究了硬币在三维视图中看到的纹理和粗糙度。

 










尺寸分析

提取了便士的轮廓,通过尺寸分析得到了边缘特征的内径和外径。外半径平均为9.500 mm ± 0.024,而内半径平均为8.960 mm ± 0.032。Mountains 3D可以对二维和三维数据源进行额外的尺寸分析,包括距离测量、台阶高度、平面度和角度计算。







表面减法

图5显示了表面减法分析所关注的区域。2007年的便士被用作四个旧便士的参考表面。从2007年的分币表面减去,显示出有孔/峰的分币之间的差异。总的表面体积差是由孔/峰的体积相加得到的。均方根误差指的是分币表面相互之间的吻合程度。


 









总结





Nanovea的高速HS2000L扫描了5枚不同年份铸造的便士。Mountains 3D软件使用轮廓提取、尺寸分析和表面减法来比较每枚硬币的表面。该分析明确了硬币之间的内、外半径,同时直接比较了表面特征的差异。Nanovea的3D轮廓仪能够测量任何纳米级分辨率的表面,结合Mountains的3D分析能力,可能的研究和质量控制应用是无限的。

 


现在,让我们来谈谈你的申请

用三维轮廓仪测量蜂窝板的表面光洁度

简介


蜂窝板表面的粗糙度、孔隙率和纹理对最终的面板设计来说是至关重要的量化。这些表面质量可以直接关系到面板表面的美学和功能特性。更好地了解表面纹理和孔隙度有助于优化面板的表面加工和可制造性。需要对蜂窝板进行定量、精确和可靠的表面测量,以控制应用和涂装要求的表面参数。Nanovea 3D非接触式传感器利用独特的色度共聚焦技术,能够精确测量这些面板表面。



测量目标


在本研究中,使用配备高速线路传感器的 Nanovea HS2000 平台来测量和比较两种具有不同表面光洁度的蜂窝板。我们展示 Nanovea 非接触式轮廓仪能够提供快速、精确的 3D 轮廓测量以及表面光洁度的全面深入分析。



结果和讨论

两个具有不同表面处理的蜂窝板样品,即样品1和样品2的表面被测量。图3和图4分别显示了样品1和样品2表面的假彩色和三维视图。粗糙度和平整度值由高级分析软件计算,并在表1中进行了比较。与样品1相比,样品2表现出更多的多孔性表面。因此,样品2拥有较高的粗糙度Sa,为14.7微米,而样品1的Sa值为4.27微米。

蜂窝板表面的二维剖面图在图5中进行了比较,让用户对样品表面不同位置的高度变化有一个直观的比较。我们可以观察到,样品1在最高峰和最低谷位置之间的高度变化为~25微米。另一方面,样品2在整个二维剖面上显示了几个深层孔隙。先进的分析软件有能力自动定位和测量六个相对较深的孔隙的深度,如图4.b样品2的表格中所示。六个孔隙中最深的孔隙拥有近90微米的最大深度(步骤4)。

为了进一步研究样品2的孔隙大小和分布,进行了孔隙率评估,并在下一节中讨论。图5中显示了切片视图,表2中总结了结果。我们可以观察到,在图5中用蓝色标记的孔隙在样品表面有一个相对均匀的分布。孔隙的投影面积占整个样品表面的18.9%。每平方毫米的总孔隙的体积是~0.06毫米³。孔隙的平均深度为42.2µm,最大深度为108.1µm。

结论



在这个应用中,我们已经展示了Nanovea HS2000平台配备的高速线传感器是一个理想的工具,可以快速和准确地分析和比较蜂窝板样品的表面光洁度。高分辨率的轮廓测量扫描与先进的分析软件相搭配,可以对蜂窝板样品的表面光洁度进行全面和定量的评估。

这里显示的数据只代表了分析软件中的一小部分计算结果。Nanovea轮廓仪几乎可以测量任何表面,在半导体、微电子、太阳能、光纤、汽车、航空航天、冶金、加工、涂层、制药、生物医学、环境和许多其他行业有广泛的应用。

现在,让我们来谈谈你的申请