美国/全球:+1-949-461-9292
欧洲。+39-011-3052-794
联系我们

类别。压痕|断裂韧性

 

微粒:压缩强度和微压痕

微小颗粒物

压缩强度和微压痕
通过测试盐类

作者。
Jorge Ramirez

修订者::
Jocelyn Esparza

简介

在开发和改进今天看到的新的和现有的微粒子和微特征(支柱和球体)方面,压缩强度已经成为质量控制测量的关键。微粒子有各种形状和大小,可以由陶瓷、玻璃、聚合物和金属开发。其用途包括药物输送、食品增味、混凝土配方等诸多方面。控制微粒子或微特征的机械性能是其成功的关键,需要有能力定量地描述其机械完整性  

深度与负载压缩强度的重要性

标准的抗压测量仪器不能承受低负荷,不能提供足够的 微粒子的深度数据。通过使用纳米或 显微压痕在这种情况下,纳米或微粒子(软或硬)的压缩强度可以被准确和精确地测量。  

测量目标

在本应用说明中,我们测量了  含有 "盐 "的压缩强度 的 NANOVEA机械测试仪 在微压痕模式下。

NANOVEA

CB500

测试条件

最大力

30 N

装载率

60 N/min

卸载率

60 N/min

压头类型

平板冲床

钢|直径1毫米

载荷与深度曲线

结果与讨论

粒子1和粒子2的高度、破坏力和强度

颗粒失效被确定为力与深度曲线的初始斜率开始明显下降的点。这种行为表明材料已经达到了屈服点,不再能够抵抗所施加的压缩力。一旦超过了屈服点,压痕深度开始在加载期间呈指数级增长。这些行为可以在下面看到 载荷与深度的关系曲线 两个样本都是如此。

结论

综上所述,我们已经说明了如何 NANOVEA 机械测试仪 在微压痕模式下,是对微粒子进行压缩强度测试的一个重要工具。尽管测试的颗粒是由相同的材料制成的,但我们怀疑本研究中测得的不同的失效点可能是由于颗粒中预先存在的微裂缝和不同的颗粒尺寸造成的。应该注意的是,对于脆性材料,声发射传感器可以在测试中测量裂纹扩展的开始。


ǞǞǞ
NANOVEA 机械测试仪 提供的深度位移分辨率低至亚纳米级。
这使得它也成为研究非常脆弱的微观粒子或特征的伟大工具。对于柔软和易碎的
使用我们的纳米压痕模块,可以实现低至0.1mN的负载。

现在,让我们来谈谈你的申请

利用微观建议改进采矿程序

微压痕研究和质量控制

岩石力学是研究岩体的机械行为,应用于采矿、钻探、水库生产和民用建筑行业。先进的仪器对机械性能的精确测量使这些行业的零件和程序得以改进。通过了解微观尺度的岩石力学,可以确保成功的质量控制程序。

显微压痕 是用于岩石力学相关研究的一个重要工具。这些技术通过进一步了解岩体特性来推进挖掘技术。微压痕技术被用来改进钻头,从而改善采矿程序。显微压痕被用来研究矿物的白垩和粉末的形成。微压痕研究可以包括硬度、杨氏模量、蠕变、应力-应变、断裂韧性,以及用一台仪器进行压缩。
 
 

测量目标

在此应用中,Nanovea 机械测试器 测量矿物岩石样品的维氏硬度 (Hv)、杨氏模量和断裂韧性。该岩石由黑云母、长石和石英组成,形成标准的花岗岩复合材料。每个都单独测试。

 

结果和讨论

本节包括一个汇总表,对不同样品的主要数值结果进行比较,然后是完整的结果列表,包括所进行的每一个压痕,如果有的话,还附有压痕的显微照片。这些完整的结果显示了硬度和杨氏模量的测量值,以及穿透深度(Δd)的平均值和标准偏差。应该考虑到,在表面粗糙度与压痕大小相同的情况下,结果会出现较大的变化。


硬度和断裂韧性的主要数值结果汇总表

 

结论

Nanovea机械测试仪在矿物岩石的坚硬表面展示了可重复性和精确的压痕结果。形成花岗岩的每种材料的硬度和杨氏模量是直接从深度与载荷的曲线上测量的。粗糙的表面意味着在更高的载荷下进行测试,可能会引起微裂纹。微裂纹可以解释测量中看到的一些变化。由于样品表面粗糙,通过标准的显微镜观察,裂缝是无法察觉的。因此,不可能计算出需要测量裂纹长度的传统断裂韧度数字。相反,我们使用该系统在增加载荷的同时,通过深度与载荷曲线的位错来检测裂纹的起始。

断裂阈值载荷被报告在发生故障的载荷处。与简单测量裂纹长度的传统断裂韧性测试不同,获得的是阈值断裂开始时的载荷。此外,受控和密切监测的环境允许测量硬度,以作为比较各种样品的定量值。

现在,让我们来谈谈你的申请

手机屏幕保护膜的抗划伤性

手机屏幕保护膜的抗划伤性

了解更多
 

测试屏幕保护器的重要性

尽管手机屏幕的设计可以抵御碎裂和刮伤,但它们仍然容易受到损害。日常的手机使用会导致它们的磨损,例如,积累划痕和裂缝。由于维修这些屏幕可能很昂贵,屏幕保护膜是一种负担得起的防损物品,通常被用来提高屏幕的耐久性。


使用Nanovea PB1000机械测试仪的宏观模块与声发射(AE)传感器相结合,我们可以清楚地确定屏幕保护器因刮擦而显示出故障的关键负载1测试,以创建两种类型的屏幕保护器之间的比较研究。


两种常见的屏幕保护材料是TPU(热塑性聚氨酯)和钢化玻璃。在这两种材料中,钢化玻璃被认为是最好的,因为它能提供更好的冲击和划痕保护。然而,它也是最昂贵的。另一方面,TPU屏幕保护膜的价格较低,是喜欢塑料屏幕保护膜的消费者的热门选择。由于屏幕保护膜的设计是为了吸收划痕和冲击,而且通常是由具有脆性的材料制成的,受控划痕测试与原位AE检测相结合是一种最佳的测试设置,以确定发生粘着性失效(如开裂、崩裂和断裂)和/或粘着性失效(如分层和剥落)的载荷。



测量目标

在这项研究中,使用Nanovea的PB1000机械测试仪的宏观模块对两种不同的商业屏幕保护膜进行了三次划痕测试。通过使用声发射传感器和光学显微镜,确定了每个屏幕保护器出现故障的关键负载。




测试过程和程序

Nanovea PB1000机械测试仪被用来测试两个贴在手机屏幕上的屏幕保护膜,并夹在一个摩擦传感器的桌子上。所有划痕的测试参数都列在下面的表1中。




结果和讨论

由于屏幕保护膜由不同的材料制成,它们各自表现出不同的故障类型。TPU屏幕保护膜只观察到一个关键故障,而钢化玻璃屏幕保护膜则出现了两个。每个样品的结果显示在下面的表2中。临界载荷#1被定义为屏幕保护膜在显微镜下开始出现内聚失效迹象的载荷。临界载荷#2是由声发射图数据中看到的第一个峰值变化定义的。


对于TPU屏幕保护膜,临界负荷#2与保护膜开始明显从手机屏幕上剥离的划痕位置相关。在其余的划痕测试中,一旦超过临界负荷#2,手机屏幕的表面就会出现划痕。对于钢化玻璃屏幕保护膜,临界载荷#1与开始出现径向断裂的位置相关。临界载荷#2发生在较高载荷的划痕末端。声发射的幅度比TPU屏幕保护膜大,但是,手机屏幕没有受到损害。在这两种情况下,临界载荷#2都对应着深度的巨大变化,表明压头已经刺穿了屏幕保护层。













总结




在这项研究中,我们展示了Nanovea PB1000机械测试仪的能力,它可以进行可控和可重复的划痕测试,并同时使用声发射检测来准确识别TPU和钢化玻璃制成的屏幕保护器中发生粘合和内聚失效的负荷。本文介绍的实验数据支持最初的假设,即钢化玻璃在手机屏幕上的防划痕性能最好。


Nanovea 机械测试仪使用符合 ISO 和 ASTM 的纳米和微米模块提供准确且可重复的压痕、划痕和磨损测量功能。这 机械测试仪 是一个完整的系统,使其成为确定薄或厚、软或硬涂层、薄膜和基材的全方位机械性能的理想解决方案。

现在,让我们来谈谈你的申请

使用微压痕的3点弯曲测试

在这个应用中,Nanovea 机械测试仪, 在 显微压痕 模式,用于测量各种尺寸的棒状样品(面条)的抗弯强度(使用3点弯曲),以显示一系列的数据。选择了2种不同的直径来展示弹性和脆性特征。使用平头压头施加点载荷,我们确定了刚度(杨氏模量),并确定了样品会断裂的临界载荷。

使用微压痕的3点弯曲测试