Kategori Mekanik Testler
Aşırı Düşük Hızlarda Sürtünme Değerlendirmesi
Düşük Hızlarda Sürtünme Değerlendirmesinin Önemi
Sürtünme, birbirlerine karşı kayan katı yüzeylerin göreceli hareketine direnen kuvvettir. Bu iki temas yüzeyinin göreceli hareketi gerçekleştiğinde, arayüzdeki sürtünme kinetik enerjiyi ısıya dönüştürür. Böyle bir süreç aynı zamanda malzemenin aşınmasına ve dolayısıyla kullanımdaki parçaların performansının düşmesine yol açabilir.
Büyük esneme oranı, yüksek esneklik, mükemmel su geçirmezlik özellikleri ve aşınma direnci ile kauçuk, otomobil lastikleri, cam silecek lastikleri, ayakkabı tabanları ve diğerleri gibi sürtünmenin önemli bir rol oynadığı çeşitli uygulamalarda ve ürünlerde yaygın olarak kullanılmaktadır. Bu uygulamaların niteliğine ve gereksinimine bağlı olarak, farklı malzemelere karşı yüksek veya düşük sürtünme istenir. Sonuç olarak, kauçuğun çeşitli yüzeylere karşı sürtünmesinin kontrollü ve güvenilir bir şekilde ölçülmesi kritik hale gelir.
Ölçüm Hedefi
Kauçuğun farklı malzemelere karşı sürtünme katsayısı (COF), Nanovea kullanılarak kontrollü ve izlenen bir şekilde ölçülür. Tribometre. Bu çalışmada, Nanovea Tribometrenin farklı malzemelerin COF'sini son derece düşük hızlarda ölçme kapasitesini sergilemek istiyoruz.
Sonuçlar ve Tartışma
Kauçuk bilyelerin (6 mm çap, RubberMill) üç malzeme (Paslanmaz çelik SS 316, Cu 110 ve isteğe bağlı Akrilik) üzerindeki sürtünme katsayısı (COF) Nanovea Tribometre ile değerlendirilmiştir. Test edilen metal numuneler ölçümden önce ayna benzeri bir yüzey finişine kadar mekanik olarak parlatılmıştır. Uygulanan normal yük altında kauçuk bilyenin hafif deformasyonu, bir alan teması oluşturmuş ve bu da asperitelerin veya numune yüzey kaplamasının homojen olmamasının COF ölçümlerine etkisini azaltmaya yardımcı olmuştur. Test parametreleri Tablo 1'de özetlenmiştir.
Dört farklı hızda farklı malzemelere karşı bir lastik topun COF'si Şekil 2'de gösterilmiştir. 2'de gösterilmiş ve yazılım tarafından otomatik olarak hesaplanan ortalama COF'ler Şekil 3'te özetlenmiş ve karşılaştırılmıştır. Dönme hızı 0,01 rpm gibi çok düşük bir değerden 5 rpm'ye yükseldikçe metal numunelerin (SS 316 ve Cu 110) COF'larının önemli ölçüde artması ilginçtir - kauçuk/SS 316 çiftinin COF değeri 0,29'dan 0,8'e ve kauçuk/Cu 110 çifti için 0,65'ten 1,1'e yükselmektedir. Bu bulgu, çeşitli laboratuvarlardan bildirilen sonuçlarla uyumludur. Grosch tarafından önerildiği gibi4 Kauçuğun sürtünmesi temel olarak iki mekanizma tarafından belirlenir: (1) kauçuk ve diğer malzeme arasındaki yapışma ve (2) yüzey asperitelerinin neden olduğu kauçuğun deformasyonundan kaynaklanan enerji kayıpları. Schallamach5 Yumuşak kauçuk küreler ve sert bir yüzey arasındaki arayüz boyunca kauçuğun karşı malzemeden ayrılma dalgalarını gözlemlemiştir. Kauçuğun alt tabaka yüzeyinden sıyrılma kuvveti ve ayrılma dalgalarının hızı, test sırasında farklı hızlardaki farklı sürtünmeyi açıklayabilir.
Buna karşılık, kauçuk/akrilik malzeme çifti farklı dönme hızlarında yüksek COF sergilemektedir. Dönme hızı 0.01 rpm'den 5 rpm'ye yükseldikçe COF değeri ~ 1.02'den ~ 1.09'a hafifçe artmaktadır. Bu kadar yüksek COF muhtemelen testler sırasında oluşan temas yüzeyindeki daha güçlü yerel kimyasal bağa bağlanmaktadır.
Sonuç
Bu çalışmada, son derece düşük hızlarda, kauçuğun kendine özgü bir sürtünme davranışı sergilediğini gösteriyoruz - sert bir yüzeye karşı sürtünmesi, göreceli hareketin artan hızıyla artar. Kauçuk, farklı malzemeler üzerinde kayarken farklı sürtünme gösterir. Nanovea Tribometer, malzemelerin sürtünme özelliklerini farklı hızlarda kontrollü ve izlenebilir bir şekilde değerlendirebilir ve kullanıcıların malzemelerin sürtünme mekanizmasına ilişkin temel anlayışı geliştirmelerine ve hedeflenen tribolojik mühendislik uygulamaları için en iyi malzeme çiftini seçmelerine olanak tanır.
Nanovea Tribometer, ISO ve ASTM uyumlu rotatif ve lineer modları kullanarak hassas ve tekrarlanabilir aşınma ve sürtünme testleri sunar ve isteğe bağlı yüksek sıcaklıkta aşınma, yağlama ve tribo-korozyon modülleri önceden entegre edilmiş tek bir sistemde mevcuttur. Dönme aşamasını 0,01 rpm'ye kadar son derece düşük hızlarda kontrol edebilir ve sürtünmenin gelişimini yerinde izleyebilir. Nanovea'nın eşsiz ürün yelpazesi, ince veya kalın, yumuşak veya sert kaplamaların, filmlerin ve alt tabakaların tüm tribolojik özelliklerini belirlemek için ideal bir çözümdür.
ŞIMDI, BAŞVURUNUZ HAKKINDA KONUŞALIM
Nanoindentasyon ile Gerilme Gevşemesi Ölçümü
GİRİŞ
Viskoelastik malzemeler hem viskoz hem de elastik malzeme özelliklerine sahip olarak karakterize edilir. Bu malzemeler sabit gerilme altında zamana bağlı gerilme azalmasına (gerilme 'gevşemesi') maruz kalır ve bu da ilk temas kuvvetinde önemli bir kayba yol açar. Gerilme gevşemesi malzemenin türüne, dokusuna, sıcaklığına, ilk gerilmeye ve zamana bağlıdır. Gerilme gevşemesinin anlaşılması, belirli uygulamalar için gereken mukavemet ve esnekliğe (gevşeme) sahip optimum malzemelerin seçilmesinde kritik öneme sahiptir.
Stres Gevşeme Ölçümünün Önemi
ASTM E328i, "Malzemeler ve Yapılar için Gerilme Gevşemesi için Standart Test Yöntemleri" uyarınca, bir malzeme veya yapı üzerine önceden belirlenmiş bir maksimum kuvvete ulaşana kadar bir girinti ile harici bir kuvvet uygulanır. Maksimum kuvvete ulaşıldığında, girintinin konumu bu derinlikte sabit tutulur. Daha sonra, girintinin konumunu korumak için gerekli olan dış kuvvetteki değişiklik, zamanın bir fonksiyonu olarak ölçülür. Gerilim gevşeme testindeki zorluk, derinliği sabit tutmaktır. Nanovea Mekanik Test Cihazı'nın nanoindentasyon modülü, piezo-elektrikli bir aktüatör ile derinliğin kapalı (geri besleme) döngü kontrolünü uygulayarak stres gevşemesini doğru bir şekilde ölçer. Aktüatör, derinliği sabit tutmak için gerçek zamanlı olarak tepki verirken, yükteki değişiklik son derece hassas bir yük sensörü tarafından ölçülür ve kaydedilir. Bu test, katı numune boyutu gerekliliklerine ihtiyaç duyulmadan neredeyse her tür malzeme üzerinde gerçekleştirilebilir. Ayrıca, testin tekrarlanabilirliğini sağlamak için tek bir düz numune üzerinde birden fazla test gerçekleştirilebilir
ÖLÇÜM HEDEFI
Bu uygulamada, Nanovea Mekanik Test Cihazının nanoindentasyon modülü, bir akrilik ve bakır numunesinin stres gevşeme davranışını ölçer. Nanovea'yı sergiliyoruz Mekanik Test Cihazı polimer ve metal malzemelerin zamana bağlı viskoelastik davranışlarını değerlendirmek için ideal bir araçtır.
TEST KOŞULLARI
Bir akrilik ve bir bakır numunenin gerilme gevşemesi Nanovea Mekanik Test Cihazının nanoindentasyon modülü ile ölçülmüştür. Farklı indentasyon yükleme hızları 1 ila 10 µm/dak arasında uygulanmıştır. Hedef maksimum yüke ulaşıldığında gevşeme sabit bir derinlikte ölçülmüştür. Sabit bir derinlikte 100 saniyelik bir bekletme süresi uygulanmış ve yükteki değişim bekletme süresi geçtikçe kaydedilmiştir. Tüm testler ortam koşullarında (23 °C oda sıcaklığı) gerçekleştirilmiş ve girinti testi parametreleri Tablo 1'de özetlenmiştir.
SONUÇLAR VE TARTIŞMA
Şekil 2 akrilik bir numunenin gerilme gevşemesi ölçümü sırasında zamanın bir fonksiyonu olarak yer değiştirme ve yükün gelişimini ve örnek olarak 3 µm/dak'lık bir girinti yükleme hızını göstermektedir. Bu testin tamamı üç aşamaya ayrılabilir: Yükleme, Gevşeme ve Boşaltma. Yükleme aşaması sırasında, yük kademeli olarak arttıkça derinlik doğrusal olarak artmıştır. Gevşeme aşaması maksimum yüke ulaşıldığında başlatılmıştır. Bu aşamada, cihazın kapalı geri besleme döngüsü derinlik kontrol özelliği kullanılarak 100 saniye boyunca sabit bir derinlik korunmuş ve yükün zamanla azaldığı gözlemlenmiştir. Tüm test, indenterin akrilik numuneden çıkarılması için bir boşaltma aşaması ile sonlandırılmıştır.
Aynı girinti yükleme oranları kullanılarak ancak gevşeme (sünme) süresi hariç tutularak ilave girinti testleri yapılmıştır. Bu testlerden yük ve yer değiştirme grafikleri elde edilmiş ve akrilik ve bakır numuneler için Şekil 3'teki grafiklerde birleştirilmiştir. Girinti yükleme hızı 10'dan 1 µm/dak'ya düştükçe, yük-yer değiştirme eğrisi hem Akrilik hem de Bakır için giderek daha yüksek penetrasyon derinliklerine doğru kaymıştır. Gerinimde zamana bağlı böyle bir artış, malzemelerin viskoelastik sünme etkisinden kaynaklanmaktadır. Daha düşük bir yükleme hızı, viskoelastik bir malzemenin karşılaştığı dış gerilime tepki vermesi ve buna göre deforme olması için daha fazla zamana sahip olmasını sağlar ...
Farklı girinti yükleme hızları kullanılarak sabit bir gerinimdeki yükün gelişimi, test edilen her iki malzeme için Şekil 4'te çizilmiştir. Yük, testlerin gevşeme aşamasının (100 saniye tutma süresi) ilk aşamalarında daha yüksek bir oranda azalmış ve tutma süresi ~50 saniyeye ulaştığında yavaşlamıştır. Polimerler ve metaller gibi viskoelastik malzemeler, daha yüksek girinti yükleme oranlarına maruz kaldıklarında daha yüksek yük kaybı oranı sergilerler. Girinti yükleme hızı 1'den 10 µm/dak'ya yükseldikçe gevşeme sırasındaki yük kaybı oranı sırasıyla Akrilik için 51,5'ten 103,2 mN'ye ve Bakır için 15,0'dan 27,4 mN'ye yükselmiştir. Şekil 5.
ASTM Standardı E328ii'de belirtildiği gibi, stres gevşeme testlerinde karşılaşılan en büyük sorun, bir cihazın sabit bir gerinim/derinlik sağlayamamasıdır. Nanovea Mekanik Test Cihazı, hızlı hareket eden piezo-elektrik aktüatör ile bağımsız kapasitör derinlik sensörü arasında derinlik için kapalı bir geri besleme döngüsü kontrolü uygulayabilmesi sayesinde mükemmel doğrulukta gerilim gevşeme ölçümleri sağlar. Gevşeme aşaması sırasında piezo-elektrik aktüatör, yükteki değişim bağımsız bir yüksek hassasiyetli yük sensörü tarafından ölçülüp kaydedilirken gerçek zamanlı olarak sabit derinlik kısıtlamasını korumak için girintiyi ayarlar.
SONUÇ
Bir akrilik ve bir bakır numunenin gerilme gevşemesi, Nanovea Mekanik Test Cihazının nanoindentasyon modülü kullanılarak farklı yükleme hızlarında ölçülmüştür. Yükleme sırasında malzemenin sünme etkisi nedeniyle daha düşük yükleme hızlarında girintiler yapıldığında daha büyük bir maksimum derinliğe ulaşılır. Hem akrilik hem de bakır numune, hedeflenen maksimum yükteki girinti konumu sabit tutulduğunda gerilme gevşemesi davranışı sergilemektedir. Daha yüksek girinti yükleme oranlarına sahip testler için gevşeme aşaması sırasında yük kaybında daha büyük değişiklikler gözlenmiştir.
Nanovea Mekanik Test Cihazı tarafından üretilen stres gevşeme testi, cihazların polimer ve metal malzemelerin zamana bağlı viskoelastik davranışını ölçme ve güvenilir bir şekilde ölçme yeteneğini sergilemektedir. Tek bir platform üzerinde eşsiz çok fonksiyonlu Nano ve Mikro modüllere sahiptir. Nem ve sıcaklık kontrol modülleri, çok çeşitli endüstrilere uygulanabilen çevresel test yetenekleri için bu cihazlarla eşleştirilebilir. Hem Nano hem de Mikro modüller çizik testi, sertlik testi ve aşınma testi modlarını içerir ve tek bir sistemde mevcut olan en geniş ve en kullanıcı dostu mekanik test yetenekleri yelpazesini sağlar.
ŞIMDI, BAŞVURUNUZ HAKKINDA KONUŞALIM
Çizik Testi Kullanarak Kaplama Hatalarını Anlama
Giriş:
Malzemelerin yüzey mühendisliği, dekoratif görünümden alt tabakaları aşınma, korozyon ve diğer saldırı türlerinden korumaya kadar çeşitli işlevsel uygulamalarda önemli bir rol oynamaktadır. Kaplamaların kalitesini ve hizmet ömrünü belirleyen önemli ve öncelikli bir faktör, yapışma ve yapışma mukavemetleridir.
Cep Telefonu Ekran Koruyucularının Çizilme Direnci
Ekran Koruyucuları Test Etmenin Önemi
Telefon ekranları kırılmaya ve çizilmeye karşı dayanıklı olacak şekilde tasarlanmış olsalar da yine de hasara karşı hassastırlar. Günlük telefon kullanımı ekranların aşınmasına ve yıpranmasına neden olur, örneğin çizikler ve çatlaklar birikir. Bu ekranları onarmak pahalı olabileceğinden, ekran koruyucuları yaygın olarak satın alınan ve bir ekranın dayanıklılığını artırmak için kullanılan uygun fiyatlı bir hasar önleme öğesidir.
Nanovea PB1000 Mekanik Test Cihazının Makro Modülünü akustik emisyon (AE) sensörü ile birlikte kullanarak, iki tip ekran koruyucu arasında karşılaştırmalı bir çalışma oluşturmak için ekran koruyucuların çizilme1 testi nedeniyle arıza gösterdiği kritik yükleri net bir şekilde belirleyebiliyoruz.
İki yaygın ekran koruyucu malzeme türü TPU (termoplastik poliüretan) ve temperli camdır. İkisi arasında temperli cam, daha iyi darbe ve çizilme koruması sağladığı için en iyisi olarak kabul edilir. Ancak, aynı zamanda en pahalı olanıdır. Öte yandan TPU ekran koruyucular daha ucuzdur ve plastik ekran koruyucuları tercih eden tüketiciler için popüler bir seçimdir. Ekran koruyucuları çizikleri ve darbeleri absorbe etmek üzere tasarlandığından ve genellikle kırılgan özelliklere sahip malzemelerden yapıldığından, yerinde AE tespiti ile eşleştirilmiş kontrollü çizik testi, kohezif arızaların (örn. çatlama, ufalanma ve kırılma) ve/veya yapışkan arızaların (örn. delaminasyon ve parçalanma) meydana geldiği yükleri belirlemek için en uygun test düzeneğidir.
Ölçüm Hedefi
Bu çalışmada, Nanovea'nın PB1000 Mekanik Test Cihazının Makro Modülü kullanılarak iki farklı ticari ekran koruyucu üzerinde üç çizik testi gerçekleştirilmiştir. Akustik emisyon sensörü ve optik mikroskop kullanılarak, her bir ekran koruyucunun arıza gösterdiği kritik yükler belirlenmiştir.
Test Prosedürü ve Prosedürler
Nanovea PB1000 Mekanik Test Cihazı, bir telefon ekranına uygulanan ve bir sürtünme sensörü masasına sıkıştırılan iki ekran koruyucuyu test etmek için kullanılmıştır. Tüm çizikler için test parametreleri aşağıdaki Tablo 1'de tablolaştırılmıştır.
Sonuçlar ve Tartışma
Ekran koruyucuları farklı malzemelerden yapıldığı için her biri farklı türde arızalar sergilemiştir. TPU ekran koruyucusunda sadece bir kritik arıza gözlenirken, temperli cam ekran koruyucusunda iki arıza gözlenmiştir. Her bir numune için sonuçlar aşağıdaki Tablo 2'de gösterilmektedir. Kritik yük #1, ekran koruyucuların mikroskop altında kohezif arıza belirtileri göstermeye başladığı yük olarak tanımlanır. Kritik yük #2, akustik emisyon grafiği verilerinde görülen ilk tepe değişikliği ile tanımlanır.
TPU ekran koruyucu için Kritik yük #2, koruyucunun telefon ekranından gözle görülür şekilde sıyrılmaya başladığı çizikle birlikte konumla ilişkilidir. Çizilme testlerinin geri kalanı için Kritik yük #2 aşıldığında telefon ekranının yüzeyinde bir çizik ortaya çıkmıştır. Temperli Cam ekran koruyucu için Kritik yük #1, radyal kırıkların görülmeye başladığı konumla ilişkilidir. Kritik yük #2, daha yüksek yüklerde çiziğin sonuna doğru gerçekleşir. Akustik emisyon TPU ekran koruyucuya göre daha büyüktür, ancak telefon ekranına herhangi bir zarar gelmemiştir. Her iki durumda da, Kritik yük #2 derinlikte büyük bir değişikliğe karşılık gelmiştir ve bu da girintinin ekran koruyucuyu delip geçtiğini göstermektedir.
Sonuç
Bu çalışmada, Nanovea PB1000 Mekanik Test Cihazının kontrollü ve tekrarlanabilir çizik testleri gerçekleştirme ve aynı zamanda TPU ve temperli camdan yapılmış ekran koruyucularda yapışkan ve kohezif arızanın meydana geldiği yükleri doğru bir şekilde belirlemek için akustik emisyon algılamayı kullanma yeteneğini sergiliyoruz. Bu belgede sunulan deneysel veriler, Temperli Camın telefon ekranlarında çizilmeyi önlemek için en iyi performansı gösterdiği yönündeki ilk varsayımı desteklemektedir.
Nanovea Mekanik Test Cihazı, ISO ve ASTM uyumlu Nano ve Mikro modülleri kullanarak doğru ve tekrarlanabilir girinti, çizik ve aşınma ölçümü yetenekleri sunar. Mekanik Test Cihazı komple bir sistemdir; ince veya kalın, yumuşak veya sert kaplamaların, filmlerin ve alt katmanların tüm mekanik özelliklerinin belirlenmesi için ideal çözümdür.
ŞIMDI, BAŞVURUNUZ HAKKINDA KONUŞALIM
PB1000 Mekanik Test Cihazı Kullanılarak Benzer Numunelerin Çoklu Çizim Otomasyonu
Giriş :
Kaplamalar, işlevsel özellikleri nedeniyle çeşitli endüstrilerde yaygın olarak kullanılmaktadır. Bir kaplamanın sertliği, erozyon direnci, düşük sürtünme ve yüksek aşınma direnci, kaplamaları önemli kılan birçok özellikten sadece birkaçıdır. Bu özellikleri ölçmek için yaygın olarak kullanılan bir yöntem çizik testidir, bu bir kaplamanın yapışkan ve/veya kohezif özelliklerinin tekrarlanabilir bir şekilde ölçülmesini sağlar. Arızanın meydana geldiği kritik yükler karşılaştırılarak, bir kaplamanın içsel özellikleri değerlendirilebilir.
Yay Sabitlerinin Nano Mekanik Karakterizasyonu
Bir yayın mekanik enerji depolama kabiliyeti uzun bir kullanım geçmişine sahiptir. Avcılık için yaylardan kapı kilitlerine kadar yay teknolojisi yüzyıllardır kullanılmaktadır. Günümüzde ister yatak, ister kalem ya da otomobil süspansiyonu olsun, günlük hayatımızda hayati bir rol oynadıkları için yaylara güveniyoruz. Bu kadar geniş bir kullanım ve tasarım çeşitliliğiyle, mekanik özelliklerini ölçme becerisi gereklidir.
Mekanik Broadview Harita Seçim Aracı
"Vakit nakittir" sözünü hepimiz duymuşuzdur. Bu nedenle birçok şirket sürekli olarak çeşitli süreçleri hızlandırmak ve iyileştirmek için yöntemler arar, bu da zaman kazandırır. Girinti testi söz konusu olduğunda, Nanovea Mekanik Test Cihazlarımızdan biri kullanıldığında hız, verimlilik ve hassasiyet bir kalite kontrol veya Ar-Ge sürecine entegre edilebilir. Bu uygulama notunda, Nanovea Mekanik Test Cihazımız ve Geniş Görünüm Haritası ve Seçim Aracı yazılım özelliklerimiz ile zamandan tasarruf etmenin kolay bir yolunu göstereceğiz.
Nanoindentasyon DMA ile Hassas Lokalize Cam Geçişi
Daha fazla bilgi edinin
Nanoindentasyon ile Gerilme Gevşemesi Ölçümü
Daha fazla bilgi edinin
ŞIMDI, BAŞVURUNUZ HAKKINDA KONUŞALIM
Yumuşak, Esnek Malzemeler Üzerinde Sıkıştırma
Yumuşak, esnek malzemelerin test edilmesinin önemi
Çok yumuşak ve esnek örneklere bir örnek mikroelektromekanik sistemlerdir. MEMS yazıcılar, cep telefonları ve arabalar gibi günlük ticari ürünlerde kullanılmaktadır [1]. Kullanım alanları arasında biyosensörler [2] ve enerji hasadı [3] gibi özel işlevler de bulunmaktadır. MEMS'lerin uygulamaları için orijinal konfigürasyonlarından sıkıştırılmış bir konfigürasyona tekrar tekrar tersine çevrilebilir şekilde geçiş yapabilmeleri gerekir [4]. Yapıların mekanik kuvvetlere nasıl tepki vereceğini anlamak için sıkıştırma testi yapılabilir. Sıkıştırma testi, çeşitli MEMS konfigürasyonlarını test etmek ve ayarlamak için kullanılabileceği gibi bu numuneler için üst ve alt kuvvet sınırlarını test etmek için de kullanılabilir.
Ölçüm Hedefi
Bu vaka çalışmasında Nanovea, iki benzersiz esnek, yay benzeri numune üzerinde sıkıştırma testi gerçekleştirdi. Çok düşük yüklerde sıkıştırma yapma ve düşük yüklerde doğru veri elde ederken büyük yer değiştirmeleri kaydetme yeteneğimizi ve bunun MEMS endüstrisine nasıl uygulanabileceğini gösteriyoruz. Gizlilik politikaları nedeniyle, numuneler ve menşei bu çalışmada açıklanmayacaktır.
Ölçüm Parametreleri
Not: 1 V/dak'lık yükleme hızı, indenter havadayken yaklaşık 100μm yer değiştirme ile orantılıdır.
Sonuçlar ve Tartışma
Numunenin mekanik kuvvetlere verdiği tepki yüke karşı derinlik eğrilerinde görülebilir. Örnek A, yukarıda listelenen test parametreleriyle yalnızca doğrusal elastik deformasyon gösterir. Şekil 2, 75μN'de yüke karşı derinlik eğrisi için elde edilebilecek kararlılığın harika bir örneğidir. Yük ve derinlik sensörlerinin kararlılığı nedeniyle, numuneden önemli bir mekanik tepki algılamak kolay olacaktır.
Örnek B, Örnek A'dan farklı bir mekanik tepki göstermektedir. 750μm derinlikten sonra, grafikte kırılma benzeri davranış görülmeye başlar. Bu durum 850 ve 975μm derinlikte yükteki keskin düşüşlerde görülmektedir. 8mN'lik bir aralıkta 1 mm'den fazla yüksek bir yükleme hızında hareket etmesine rağmen, son derece hassas yük ve derinlik sensörlerimiz kullanıcının aşağıdaki şık yük ve derinlik eğrilerini elde etmesini sağlar.
Sertlik, yüke karşı derinlik eğrilerinin boşaltma kısmından hesaplanmıştır. Sertlik, numuneyi deforme etmek için ne kadar kuvvet gerektiğini yansıtır. Bu sertlik hesaplamasında, malzemenin gerçek oranı bilinmediği için 0,3'lük bir sözde Poisson oranı kullanılmıştır. Bu durumda, Örnek B'nin Örnek A'dan daha sert olduğu kanıtlanmıştır.
Sonuç
İki farklı esnek numune Nanovea Mekanik Test Cihazının Nano Modülü kullanılarak sıkıştırma altında test edilmiştir. Testler çok düşük yüklerde (1mm) gerçekleştirilmiştir. Nano Modül ile yapılan nano ölçekli sıkıştırma testleri, modülün çok yumuşak ve esnek numuneleri test etme kabiliyetini göstermiştir. Bu çalışma için ek testler, Nanovea Mekanik Test Cihazının çoklu yükleme seçeneği aracılığıyla tekrarlanan döngüsel yüklemenin yay benzeri numunelerin elastik toparlanma özelliğini nasıl etkilediğini ele alabilir.
Bu test yöntemi hakkında daha fazla bilgi için info@nanovea.com adresinden bizimle iletişime geçmekten çekinmeyin ve ek uygulama notları için lütfen kapsamlı Uygulama Notu dijital kütüphanemize göz atın.
Referanslar
[1] "MEMS için Giriş ve Uygulama Alanları." EEHerald, 1 Mart 2017, www.eeherald.com/section/design-guide/mems_application_introduction.html.
[2] Louizos, Louizos-Alexandros; Athanasopoulos, Panagiotis G.; Varty, Kevin (2012). "Mikroelektromekanik Sistemler ve Nanoteknoloji. Bir Sonraki Stent Teknolojik Çağı için Bir Platform". Vasc Endovascular Surg.46 (8): 605–609. doi:10.1177/1538574412462637. PMID 23047818.
[3] Hajati, Arman; Sang-Gook Kim (2011). "Ultra geniş bant genişliğinde piezoelektrik enerji hasadı". AppliedPhysics Letters. 99 (8): 083105. doi:10.1063/1.3629551.
[4] Fu, Haoran ve diğerleri. "Çok kararlı burkulma mekaniği ile şekillendirilebilir 3D mezoyapılar ve mikroelektronik cihazlar." Nature materials 17.3 (2018): 268.
ŞIMDI, BAŞVURUNUZ HAKKINDA KONUŞALIM
Kauçuk Viskoelastik Analizi
Kauçuk Viskoelastik Analizi
Daha fazla bilgi edinin
Araçlar yolda çalışırken lastikler döngüsel olarak yüksek deformasyonlara maruz kalır. Zorlu yol koşullarına maruz kaldıklarında, lastiklerin hizmet ömrü diş aşınması, sürtünmeden kaynaklanan ısı, kauçuk yaşlanması ve diğerleri gibi birçok faktör tarafından tehlikeye atılır.
Sonuç olarak, lastikler genellikle karbon dolgulu kauçuk, naylon kordonlar ve çelik tellerden vb. oluşan kompozit katman yapılarına sahiptir. Özellikle, lastik sistemlerinin farklı bölgelerindeki kauçuk bileşimi, aşınmaya dayanıklı iplik, yastık kauçuk tabakası ve sert kauçuk taban tabakası dahil ancak bunlarla sınırlı olmamak üzere farklı işlevsel özellikler sağlamak için optimize edilmiştir.
Kauçuğun viskoelastik davranışının güvenilir ve tekrarlanabilir bir testi, yeni lastiklerin kalite kontrolü ve Ar-Ge'sinin yanı sıra eski lastiklerin ömrünün değerlendirilmesinde de kritik öneme sahiptir. Dinamik Mekanik Analiz (DMA) sırasında Nanoindentasyon viskoelastisiteyi karakterize eden bir tekniktir. Kontrollü salınım gerilimi uygulandığında ortaya çıkan gerinim ölçülür ve böylece kullanıcıların test edilen malzemelerin karmaşık modülünü belirlemesine olanak sağlanır.
Kategoriler
- Uygulama Notları
- Halka Tribolojisi Üzerine Blok
- Korozyon Tribolojisi
- Sürtünme Testi | Sürtünme Katsayısı
- Yüksek Sıcaklık Mekanik Testleri
- Yüksek Sıcaklık Tribolojisi
- Nem ve Gazlar Triboloji
- Nem Mekanik Testleri
- Girinti | Sürünme ve Gevşeme
- Girinti | Kırılma Tokluğu
- Girinti | Sertlik ve Elastik
- Girinti | Kayıp ve Depolama
- Girinti | Gerilme ve Gerinim
- Girinti | Akma Dayanımı ve Yorulma
- Laboratuvar Testleri
- Doğrusal Triboloji
- Sıvı Mekanik Testleri
- Sıvı Tribolojisi
- Düşük Sıcaklık Tribolojisi
- Mekanik Testler
- Basın Bülteni
- Profilometri | Düzlük ve Çarpıklık
- Profilometri | Geometri ve Şekil
- Profilometri | Pürüzlülük ve Finiş
- Profilometri | Basamak Yüksekliği ve Kalınlığı
- Profilometri | Doku ve Tane
- Profilometri | Hacim ve Alan
- Profilometri Testi
- Halka Üzerinde Halka Tribolojisi
- Rotasyonel Triboloji
- Çizilme Testi | Yapıştırıcı Arızası
- Çizilme Testi | Yapışma Hatası
- Çizilme Testi | Çok Geçişli Aşınma
- Çizilme Testi | Çizilme Sertliği
- Çizik Testi Triboloji
- Ticaret Fuarı
- Triboloji Testleri
- Uncategorized
Arşivler
- Eylül 2023
- Ağustos 2023
- Haziran 2023
- Mayıs 2023
- Temmuz 2022
- Mayıs 2022
- Nisan 2022
- Ocak 2022
- Aralık 2021
- Kasım 2021
- Ekim 2021
- Eylül 2021
- Ağustos 2021
- Temmuz 2021
- Haziran 2021
- Mayıs 2021
- Mart 2021
- Şubat 2021
- Aralık 2020
- Kasım 2020
- Ekim 2020
- Eylül 2020
- Temmuz 2020
- Mayıs 2020
- Nisan 2020
- Mart 2020
- Şubat 2020
- Ocak 2020
- Kasım 2019
- Ekim 2019
- Eylül 2019
- Ağustos 2019
- Temmuz 2019
- Haziran 2019
- Mayıs 2019
- Nisan 2019
- Mart 2019
- Ocak 2019
- Aralık 2018
- Kasım 2018
- Ekim 2018
- Eylül 2018
- Temmuz 2018
- Haziran 2018
- Mayıs 2018
- Nisan 2018
- Mart 2018
- Şubat 2018
- Kasım 2017
- Ekim 2017
- Eylül 2017
- Ağustos 2017
- Haziran 2017
- Mayıs 2017
- Nisan 2017
- Mart 2017
- Şubat 2017
- Ocak 2017
- Kasım 2016
- Ekim 2016
- Ağustos 2016
- Temmuz 2016
- Haziran 2016
- Mayıs 2016
- Nisan 2016
- Mart 2016
- Şubat 2016
- Ocak 2016
- Aralık 2015
- Kasım 2015
- Ekim 2015
- Eylül 2015
- Ağustos 2015
- Temmuz 2015
- Haziran 2015
- Mayıs 2015
- Nisan 2015
- Mart 2015
- Şubat 2015
- Ocak 2015
- Kasım 2014
- Ekim 2014
- Eylül 2014
- Ağustos 2014
- Temmuz 2014
- Haziran 2014
- Mayıs 2014
- Nisan 2014
- Mart 2014
- Şubat 2014
- Ocak 2014
- Aralık 2013
- Kasım 2013
- Ekim 2013
- Eylül 2013
- Ağustos 2013
- Temmuz 2013
- Haziran 2013
- Mayıs 2013
- Nisan 2013
- Mart 2013
- Şubat 2013
- Ocak 2013
- Aralık 2012
- Kasım 2012
- Ekim 2012
- Eylül 2012
- Ağustos 2012
- Temmuz 2012
- Haziran 2012
- Mayıs 2012
- Nisan 2012
- Mart 2012
- Şubat 2012
- Ocak 2012
- Aralık 2011
- Kasım 2011
- Ekim 2011
- Eylül 2011
- Ağustos 2011
- Temmuz 2011
- Haziran 2011
- Mayıs 2011
- Kasım 2010
- Ocak 2010
- Nisan 2009
- Mart 2009
- Ocak 2009
- Aralık 2008
- Ekim 2008
- Ağustos 2007
- Temmuz 2006
- Mart 2006
- Ocak 2005
- Nisan 2004