美国/全球:+1-949-461-9292
欧洲。+39-011-3052-794
联系我们

钢和铝的屈服强度和拉伸强度

使用压痕测量屈服强度和极限拉伸强度的重要性

传统上,屈服强度和极限拉伸强度的测试是使用大型拉伸试验机,需要巨大的力量来拉开测试样品。为一种材料适当地加工许多测试券,而每个样品只能测试一次,这既费钱又费时。样品中的小缺陷会在测试结果中产生明显的差异。市场上不同配置和排列的拉伸试验机往往导致测试力学和结果的巨大差异。

Nanovea的创新压痕方法直接提供了屈服强度和极限拉伸强度值,可与传统拉伸试验测量的值相媲美。这种测量方法为所有行业开辟了一个新的测试可能性领域。与拉伸试验所需的复杂试样形状相比,简单的实验设置大大减少了样品制备时间和成本。通过小的压痕尺寸,可以在一个样品上进行多次测量。它防止了在样品加工过程中产生的拉伸试验券的缺陷的影响。在局部区域的小样品上进行YS和UTS测量,可以在管道或汽车结构中进行测绘和局部缺陷检测。
 
 

测量目标

在这个应用中,Nanovea 机械测试仪 测量不锈钢 SS304 和铝 Al6061 金属合金样品的屈服强度和极限拉伸强度。选择样品是因为其普遍认可的屈服强度和极限拉伸强度值,显示了 Nanovea 压痕方法的可靠性。

测试过程和程序

屈服强度和极限拉伸强度测试是在Nanovea机械测试仪上进行的。 显微压痕 模式。一个直径为200μm的圆柱形扁平金刚石尖端被用于这一应用。SS304和Al6061合金因其广泛的工业应用和公认的屈服强度和极限拉伸强度值而被选中,以显示压痕方法的巨大潜力和可靠性。在测试前,样品被机械地打磨成镜面状,以避免表面粗糙或缺陷对测试结果的影响。测试条件列于表1。每个样品都进行了十次以上的测试,以确保测试值的可重复性。

结果和讨论

SS304和Al6061合金样品的载荷-位移曲线显示在图3中,测试样品上的平面压头印记被插入。使用Nanovea开发的特殊算法分析 "S "形加载曲线,计算屈服强度和极限拉伸强度。数值是由软件自动计算的,如表1所示。通过传统的拉伸试验获得的屈服强度和极限拉伸强度值被列出来进行比较。

 

总结

在这项研究中,我们展示了 Nanovea Mechanical Tester 评估不锈钢和铝合金板材样品的屈服强度和极限拉伸强度的能力。简单的实验设置显着减少了拉伸测试所需的样品制备时间和成本。小压痕尺寸使得可以对一个样品进行多次测量。该方法允许对小样本和局部区域进行YS/UTS测量,为YS/UTS测绘和管道或汽车结构的局部缺陷检测提供解决方案。

Nanovea 机械测试仪的纳米、微观或宏观模块均包括符合 ISO 和 ASTM 的压痕、划痕和磨损测试仪模式,可在单个系统中提供最广泛、最用户友好的测试范围。 Nanovea 无与伦比的系列是测定薄或厚、软或硬涂层、薄膜和基材的全方位机械性能的理想解决方案,包括硬度、杨氏模量、断裂韧性、附着力、耐磨性等。此外,除了粗糙度等其他表面测量之外,可选的 3D 非接触式轮廓仪和 AFM 模块还可用于压痕、划痕和磨损轨迹的高分辨率 3D 成像。

现在,让我们来谈谈你的申请

评论