摩擦试验机测高温下划痕硬度
用纳米压痕DMA实现精确的局部玻璃化转变
ASTM D7187使用纳米划痕的温度效应
根据ASTM D7187标准,油漆的抗划伤性和抗污性在其最终用途中起着至关重要的作用。易受划痕影响的汽车漆在维护和修理方面很困难,而且成本很高。为了达到最佳的抗刮伤/抗污能力,人们开发了不同的底漆、基底漆和清漆的涂层结构。 纳米划痕测试 已经开发出一种标准的测试方法,用于测量油漆涂层的划痕/破坏行为的机械方面,如ASTM D7187中所述。.在划痕试验中,不同的基本变形机制,即弹性变形、塑性变形和断裂,在不同的载荷下发生。它提供了对油漆涂层的抗塑性和抗断裂性的定量评估。
ASTM D7187使用纳米划痕的温度效应
特富龙在高温下的机械性能
在高温下,热量会改变聚四氟乙烯的机械性能,例如硬度和粘弹性,这可能会导致机械故障。需要对聚合物材料的热机械行为进行可靠的测量,以定量评估高温应用的候选材料。这 纳米模组 纳诺维亚 机械测试仪 通过使用高精度压电器件施加负载并测量力和位移的演变来研究硬度、杨氏模量和蠕变。先进的烘箱在整个纳米压痕测试过程中在压痕尖端和样品表面周围产生均匀的温度,从而最大限度地减少热漂移的影响。
利用纳米压痕技术研究高温下特氟隆的机械性能
利用纳米压痕对焊料进行热力学分析
当温度超过0.6时,焊点会受到热和/或外部应力的影响。 Tm 其中 Tm 是材料的熔点,单位是开尔文。焊料在高温下的蠕变行为会直接影响焊料互连的可靠性. 因此,需要对不同温度下的焊料进行可靠且定量的热机械分析。这 纳米模组 纳诺维亚 机械测试仪 通过高精度压电施加负载并直接测量力和位移的演变。先进的加热炉使尖端和样品表面温度均匀,确保测量精度并最大限度地减少热漂移的影响。
利用纳米压痕对焊料进行热力学分析
使用摩擦仪的高温划痕硬度
材料是根据服务要求来选择的。对于涉及重大温度变化和热梯度的应用,调查材料在高温下的机械性能以充分了解其机械极限是至关重要的。材料,特别是聚合物,通常在高温下会软化。很多机械故障是由蠕变变形和热疲劳引起的,只有在高温下才会发生。因此,需要一种可靠的技术来测量高温下的划痕硬度,以确保为高温应用正确选择材料。
使用摩擦仪的高温划痕硬度