الولايات المتحدة الأمريكية / العالمية: 9292-461-949-1+
أوروبا: 794-3052-011-39+
تراسل معنا

التصنيف: Profilometry | الملمس والحبوب

 

طلقة النار Peened تحليل السطح

تحليل الأسطح المنبثقة من الرصاص

استخدام مقياس الأبعاد ثلاثي الأبعاد غير المتصل

أُعدت بواسطة

كرايج للتنزه

مقدمة

الطلقة بالرصاص هي عملية يتم فيها قصف الركيزة بمعدن كروي أو زجاجي أو خرز خزفي - يشار إليه عادة باسم "طلقة" - بقوة تهدف إلى تحفيز اللدونة على السطح. يوفر تحليل الخصائص قبل وبعد التثبيط رؤى حاسمة لتعزيز فهم العملية والتحكم فيها. تعد خشونة السطح ومنطقة تغطية الدمامل التي خلفتها اللقطة من الجوانب الجديرة بالملاحظة بشكل خاص.

أهمية مقياس الملامح ثلاثي الأبعاد غير الملامس لتحليل الأسطح المشقوقة بالرصاص

على عكس مقاييس ملفات تعريف الاتصال التقليدية، والتي تم استخدامها تقليديًا لتحليل السطح المسطح، يوفر قياس عدم الاتصال ثلاثي الأبعاد صورة ثلاثية الأبعاد كاملة لتقديم فهم أكثر شمولاً لمنطقة التغطية والتضاريس السطحية. وبدون القدرات ثلاثية الأبعاد، سيعتمد الفحص فقط على المعلومات ثنائية الأبعاد، وهو ما لا يكفي لتوصيف السطح. يعد فهم التضاريس ومنطقة التغطية والخشونة ثلاثية الأبعاد أفضل طريقة للتحكم في عملية التنعيم أو تحسينها. نانوفيا مقاييس عدم الاتصال ثلاثية الأبعاد الاستفادة من تقنية Chromatic Light مع قدرة فريدة على قياس الزوايا الحادة الموجودة على الأسطح المجهزة والمسطحة. بالإضافة إلى ذلك، عندما تفشل التقنيات الأخرى في توفير بيانات موثوقة بسبب اتصال المسبار، أو اختلاف السطح، أو الزاوية، أو الانعكاس، تنجح مقاييس ملفات التعريف NANOVEA.

هدف القياس

في هذا التطبيق ، يتم استخدام مقياس NANOVEA ST400 غير الملامس لقياس المواد الخام واثنين من الأسطح المثقوبة بشكل مختلف لإجراء مراجعة مقارنة. توجد قائمة لا حصر لها من معلمات السطح التي يمكن حسابها تلقائيًا بعد المسح السطحي ثلاثي الأبعاد. هنا ، سنراجع السطح ثلاثي الأبعاد ونحدد المناطق ذات الأهمية لمزيد من التحليل ، بما في ذلك التحديد الكمي والتحقيق في الخشونة والدمامل ومساحة السطح.

نانوفيا

ST400

العينة

نتائج

سطح صلب

ISO 25178 معلمات الخشونة ثلاثية الأبعاد

SA 0.399 ميكرومتر متوسط الخشونة
سكوير 0.516 ميكرومتر خشونة RMS
س 5.686 ميكرومتر الحد الأقصى من الذروة إلى الوادي
Sp 2.976 ميكرومتر الحد الأقصى لارتفاع الذروة
سيفيرت 2.711 ميكرومتر أقصى عمق حفرة
SKU 3.9344 التفرطح
SSK -0.0113 انحراف
سال 0.0028 ملم طول الارتباط التلقائي
شارع 0.0613 نسبة أبعاد الملمس
سدار 26.539 ملم² مساحة السطح
سفك 0.589 ميكرومتر انخفاض عمق الوادي
 

نتائج

سطح مثقوب 1

تغطية السطح
98.105%

ISO 25178 معلمات الخشونة ثلاثية الأبعاد

سا 4.102 ميكرومتر متوسط الخشونة
سكوير 5.153 ميكرومتر خشونة RMS
س 44.975 ميكرومتر الحد الأقصى من الذروة إلى الوادي
Sp 24.332 ميكرومتر الحد الأقصى لارتفاع الذروة
سيفيرت 20.644 ميكرومتر أقصى عمق حفرة
SKU 3.0187 التفرطح
SSK 0.0625 انحراف
سال 0.0976 ملم طول الارتباط التلقائي
شارع 0.9278 نسبة أبعاد الملمس
سدار 29.451 ملم² مساحة السطح
سفك 5.008 ميكرومتر انخفاض عمق الوادي

نتائج

سطح مثقوب 2

تغطية السطح 97.366%

ISO 25178 معلمات الخشونة ثلاثية الأبعاد

سا 4.330 ميكرومتر متوسط الخشونة
سكوير 5.455 ميكرومتر خشونة RMS
س 54.013 ميكرومتر الحد الأقصى من الذروة إلى الوادي
Sp 25.908 ميكرومتر الحد الأقصى لارتفاع الذروة
سيفيرت 28.105 ميكرومتر أقصى عمق حفرة
SKU 3.0642 التفرطح
SSK 0.1108 انحراف
سال 0.1034 ملم طول الارتباط التلقائي
شارع 0.9733 نسبة أبعاد الملمس
سدار 29.623 ملم² مساحة السطح
سفك 5.167 ميكرومتر انخفاض عمق الوادي

خاتمة

في تطبيق تحليل السطح هذا ، أظهرنا كيف أن NANOVEA ST400 3D Non-Contact Profiler يميز بدقة كل من تفاصيل التضاريس والنانومتر لسطح مثقوب. من الواضح أن كلا من Surface 1 و Surface 2 لهما تأثير كبير على جميع المعلمات المذكورة هنا عند مقارنتها بالمواد الخام. يكشف الفحص البصري البسيط للصور عن الاختلافات بين الأسطح. يتم تأكيد ذلك أيضًا من خلال مراقبة منطقة التغطية والمعلمات المدرجة. بالمقارنة مع السطح 2 ، يُظهر السطح 1 متوسط خشونة أقل (Sa) ، وخدوش أقل عمقًا (Sv) ، ومساحة سطح مخفضة (Sdar) ، ولكن مساحة تغطية أعلى قليلاً.

من خلال قياسات السطح ثلاثية الأبعاد هذه ، يمكن تحديد مناطق الاهتمام بسهولة وإخضاعها لمجموعة شاملة من القياسات ، بما في ذلك الخشونة ، والانتهاء ، والملمس ، والشكل ، والتضاريس ، والتسطيح ، والصفقة ، والاستواء ، والحجم ، والارتفاع ، وغيرها. يمكن اختيار المقطع العرضي ثنائي الأبعاد بسرعة لتحليل مفصل. تسمح هذه المعلومات بإجراء تحقيق شامل للأسطح المثقوبة ، باستخدام مجموعة كاملة من موارد قياس السطح. يمكن دراسة مجالات الاهتمام المحددة بشكل أكبر باستخدام وحدة AFM المتكاملة. توفر مقاييس ملف التعريف NANOVEA 3D سرعات تصل إلى 200 مم / ثانية. يمكن تخصيصها من حيث الحجم والسرعات وإمكانيات المسح ، ويمكن حتى أن تتوافق مع معايير Class 1 Clean Room. تتوفر أيضًا خيارات مثل ناقل الفهرسة والتكامل للاستخدام المضمن أو عبر الإنترنت.

شكر خاص للسيد هايدن في صندوق النقد الدولي لتزويده بالعينة الموضحة في هذه المذكرة. شركة تشطيب المعادن الصناعية | indmetfin.com

مورفولوجيا سطح الطلاء

صبغ السطح السطحي

مراقبة التطور في الوقت الحقيقي الآلي
استخدام NANOVEA 3D PROFILOMETER

أُعدت بواسطة

دوانجي لي ، دكتوراه

مقدمة

تلعب الخصائص الوقائية والزخرفية للطلاء دورًا مهمًا في مجموعة متنوعة من الصناعات ، بما في ذلك صناعة السيارات والصناعات البحرية والعسكرية والبناء. لتحقيق الخصائص المرغوبة ، مثل مقاومة التآكل ، والحماية من الأشعة فوق البنفسجية ، ومقاومة التآكل ، يتم تحليل صيغ الطلاء والبنيات بعناية وتعديلها وتحسينها.

أهمية مقياس التشكيل ثلاثي الأبعاد غير المتصل لتحليل التشريح السطحي للطلاء الجاف

عادة ما يتم تطبيق الطلاء في صورة سائلة ويخضع لعملية تجفيف تتضمن تبخر المذيبات وتحويل الطلاء السائل إلى طبقة صلبة. أثناء عملية التجفيف ، يغير سطح الطلاء شكله وملمسه تدريجيًا. يمكن تطوير أشكال وتشطيبات الأسطح المختلفة باستخدام مواد مضافة لتعديل التوتر السطحي وخصائص تدفق الطلاء. ومع ذلك ، في حالة وجود وصفة طلاء سيئة الصياغة أو معالجة غير صحيحة للأسطح ، قد تحدث أعطال غير مرغوب فيها على سطح الطلاء.

يمكن للمراقبة الدقيقة في الموقع لمورفولوجيا سطح الطلاء خلال فترة التجفيف أن توفر رؤية مباشرة لآلية التجفيف. علاوة على ذلك، فإن التطور في الوقت الحقيقي لمورفولوجيات السطح يعد معلومات مفيدة جدًا في مختلف التطبيقات، مثل الطباعة ثلاثية الأبعاد. النانو مقاييس عدم الاتصال ثلاثية الأبعاد قياس مورفولوجية سطح الطلاء للمواد دون لمس العينة، وتجنب أي تغيير في الشكل قد يكون ناجماً عن تقنيات الاتصال مثل القلم المنزلق.

هدف القياس

في هذا التطبيق ، يتم استخدام مقياس NANOVEA ST500 غير الملامس ، المزود بمستشعر بصري عالي السرعة ، لمراقبة شكل سطح الطلاء خلال فترة التجفيف التي تبلغ ساعة واحدة. نعرض قدرة NANOVEA Non-Contact Profilometer في توفير قياس آلي ثلاثي الأبعاد في الوقت الفعلي للمواد مع تغيير مستمر للشكل.

نانوفيا

ST500

النتائج والمناقشة

تم تطبيق الطلاء على سطح صفيحة معدنية ، متبوعًا على الفور بقياسات آلية لتطور التشكل لطلاء التجفيف في الموقع باستخدام مقياس NANOVEA ST500 غير الملامس المجهز بجهاز استشعار خط عالي السرعة. تمت برمجة الماكرو لقياس وتسجيل مورفولوجيا السطح ثلاثي الأبعاد تلقائيًا في فترات زمنية محددة: 0 ، 5 ، 10 ، 20 ، 30 ، 40 ، 50 ، 60 دقيقة. يتيح إجراء المسح الآلي هذا للمستخدمين أداء مهام المسح تلقائيًا عن طريق تشغيل إجراءات محددة بالتسلسل ، مما يقلل بشكل كبير من الجهد والوقت وأخطاء المستخدم المحتملة مقارنة بالاختبار اليدوي أو عمليات المسح المتكررة. أثبتت هذه الأتمتة أنها مفيدة للغاية للقياسات طويلة المدى التي تتضمن عمليات مسح متعددة على فترات زمنية مختلفة.

يولد مستشعر الخط البصري خطًا ساطعًا يتكون من 192 نقطة ، كما هو موضح في الشكل 1. هذه النقاط الضوئية الـ 192 تفحص سطح العينة في وقت واحد ، مما يزيد بشكل كبير من سرعة المسح. يضمن ذلك إتمام كل مسح ثلاثي الأبعاد بسرعة لتجنب التغييرات الكبيرة في السطح أثناء كل عملية مسح على حدة.

شكل ١: مستشعر الخط البصري لمسح سطح طلاء التجفيف.

يتم عرض عرض الألوان الزائف والعرض ثلاثي الأبعاد والملف الشخصي ثنائي الأبعاد لطوبوغرافيا الطلاء المجفف في الأوقات التمثيلية في الشكل 2 والشكل 3 والشكل 4 على التوالي. يسهل اللون الخاطئ في الصور اكتشاف الميزات التي لا يمكن تمييزها بسهولة. تمثل الألوان المختلفة اختلافات الارتفاع عبر مناطق مختلفة من سطح العينة. يوفر العرض ثلاثي الأبعاد أداة مثالية للمستخدمين لمراقبة سطح الطلاء من زوايا مختلفة. خلال أول 30 دقيقة من الاختبار ، تتغير الألوان الزائفة على سطح الطلاء تدريجيًا من درجات أكثر دفئًا إلى ألوان أكثر برودة ، مما يشير إلى انخفاض تدريجي في الارتفاع بمرور الوقت في هذه الفترة. تتباطأ هذه العملية ، كما يتضح من تغير اللون المعتدل عند مقارنة الطلاء في 30 و 60 دقيقة.

تم رسم متوسط ارتفاع العينة وقيم الخشونة Sa كدالة لوقت تجفيف الطلاء في الشكل 5. تحليل الخشونة الكامل للطلاء بعد 0 و 30 و 60 دقيقة من وقت التجفيف مدرج في الجدول 1. ويمكن ملاحظة ذلك ينخفض متوسط ارتفاع سطح الطلاء بسرعة من 471 إلى 329 ميكرومتر في أول 30 دقيقة من وقت التجفيف. يتطور نسيج السطح في نفس الوقت الذي يتبخر فيه المذيب ، مما يؤدي إلى زيادة خشونة قيمة Sa من 7.19 إلى 22.6 ميكرومتر. تتباطأ عملية تجفيف الطلاء بعد ذلك ، مما يؤدي إلى انخفاض تدريجي في ارتفاع العينة وقيمة Sa إلى 317 ميكرومتر و 19.6 ميكرومتر ، على التوالي ، عند 60 دقيقة.

تسلط هذه الدراسة الضوء على قدرات NANOVEA 3D Non-Contact Profilometer في مراقبة التغيرات ثلاثية الأبعاد للسطح لتجفيف الطلاء في الوقت الفعلي ، مما يوفر رؤى قيمة في عملية تجفيف الطلاء. من خلال قياس شكل السطح دون لمس العينة ، يتجنب مقياس التشكيل الجانبي إدخال تعديلات على الشكل للطلاء غير المجفف ، والتي يمكن أن تحدث مع تقنيات التلامس مثل القلم المنزلق. يضمن نهج عدم الاتصال هذا تحليلًا دقيقًا وموثوقًا به لتجفيف مورفولوجيا سطح الطلاء.

الشكل 2: تطور مورفولوجيا سطح الطلاء الجاف في أوقات مختلفة.

الشكل 3: عرض ثلاثي الأبعاد لتطور سطح الطلاء في أوقات التجفيف المختلفة.

الشكل 4: ملف تعريف ثنائي الأبعاد عبر عينة الطلاء بعد أوقات تجفيف مختلفة.

الشكل 5: تطور متوسط ارتفاع العينة وقيمة الخشونة Sa كدالة لوقت تجفيف الطلاء.

ISO 25178

وقت التجفيف (دقيقة) 0 5 10 20 30 40 50 60
Sq (ميكرومتر) 7.91 9.4 10.8 20.9 22.6 20.6 19.9 19.6
SKU 26.3 19.8 14.6 11.9 10.5 9.87 9.83 9.82
س (ميكرومتر) 97.4 105 108 116 125 118 114 112
سيفرت (ميكرومتر) 127 70.2 116 164 168 138 130 128
Sz (ميكرومتر) 224 175 224 280 294 256 244 241
سا (ميكرومتر) 4.4 5.44 6.42 12.2 13.3 12.2 11.9 11.8

سكوير - ارتفاع الجذر التربيعي | SKU - التفرطح | س - أقصى ارتفاع ذروة | سيفرت - أقصى ارتفاع للحفرة | Sz - أقصى ارتفاع | سيفرت - حسابي يعني الارتفاع

الجدول 1: خشونة الطلاء في أوقات التجفيف المختلفة.

خاتمة

في هذا التطبيق ، عرضنا إمكانيات NANOVEA ST500 3D Non-Contact Profilometer في مراقبة تطور مورفولوجيا سطح الطلاء أثناء عملية التجفيف. مستشعر الخط البصري عالي السرعة ، الذي يولد خطًا من 192 نقطة ضوئية تمسح سطح العينة في وقت واحد ، جعل الدراسة فعالة من حيث الوقت مع ضمان دقة لا مثيل لها.

تسمح الوظيفة الكلية لبرنامج الاستحواذ ببرمجة القياسات الآلية لمورفولوجيا السطح ثلاثي الأبعاد في الموقع ، مما يجعلها مفيدة بشكل خاص للقياس طويل الأجل الذي يتضمن عمليات مسح متعددة في فترات زمنية محددة مستهدفة. إنه يقلل بشكل كبير من الوقت والجهد وإمكانية حدوث أخطاء المستخدم. تتم مراقبة التغييرات التدريجية في مورفولوجيا السطح وتسجيلها بشكل مستمر في الوقت الفعلي بينما يجف الطلاء ، مما يوفر رؤى قيمة حول آلية تجفيف الطلاء.

البيانات المعروضة هنا لا تمثل سوى جزء بسيط من الحسابات المتاحة في برنامج التحليل. مقاييس NANOVEA قادرة على قياس أي سطح تقريبًا ، سواء كان شفافًا أو داكنًا أو عاكسًا أو معتمًا.

 

الآن ، لنتحدث عن طلبك

تحليل فركتوجرافي باستخدام البروفايلو متر ذات ثلاث درجات

تحليل فركتوجرافي

استخدام القياس الشخصي ثلاثي الأبعاد

أُعدت بواسطة

كرايج للتنزه

مقدمة

تصوير الكسور هو دراسة السمات الموجودة على الأسطح المكسورة وقد تم فحصه تاريخيًا عبر المجهر أو SEM. اعتمادًا على حجم الميزة، يتم تحديد المجهر (ميزات الماكرو) أو SEM (ميزات النانو والجزئي) لتحليل السطح. كلاهما يسمح في النهاية بتحديد نوع آلية الكسر. على الرغم من فعاليته، إلا أن المجهر له حدود واضحة ويعتبر SEM في معظم الحالات، بخلاف التحليل على المستوى الذري، غير عملي لقياس سطح الكسر ويفتقر إلى القدرة على الاستخدام على نطاق أوسع. مع التقدم في تكنولوجيا القياس البصري، NANOVEA مقياس عدم الاتصال ثلاثي الأبعاد تعتبر الآن الأداة المفضلة، مع قدرتها على توفير النانو من خلال قياسات سطحية ثنائية وثلاثية الأبعاد على نطاق واسع

أهمية مقياس التشكيل ثلاثي الأبعاد غير المتصل لفحص الكسر

على عكس SEM ، يمكن لمقياس ملف التعريف ثلاثي الأبعاد غير المتصل قياس أي سطح تقريبًا ، وحجم العينة ، مع الحد الأدنى من إعداد العينة ، وكل ذلك مع تقديم أبعاد رأسية / أفقية متفوقة لأبعاد SEM. باستخدام ملف التعريف ، يتم التقاط ميزات النطاق الكلي من خلال النانو في قياس واحد مع تأثير صفري من انعكاس العينة. قم بقياس أي مادة بسهولة: شفافة ، غير شفافة ، مرآوية ، منتشرة ، مصقولة ، خشنة ، إلخ. يوفر مقياس ملف التعريف ثلاثي الأبعاد غير المتصل قدرة واسعة وسهلة الاستخدام لتعظيم دراسات التصدع السطحي بجزء بسيط من تكلفة SEM.

هدف القياس

في هذا التطبيق ، يتم استخدام NANOVEA ST400 لقياس السطح المكسور لعينة الصلب. في هذه الدراسة ، سنعرض منطقة ثلاثية الأبعاد واستخراج ملف تعريف ثنائي الأبعاد وخريطة اتجاهية للسطح.

نانوفيا

ST400

نتائج

المسطح العلوي

اتجاه نسيج السطح ثلاثي الأبعاد

الخواص51.26%
الاتجاه الأول123.2º
الاتجاه الثاني116.3º
الاتجاه الثالث0.1725º

يمكن حساب مساحة السطح والحجم والخشونة والعديد من الأشياء الأخرى تلقائيًا من هذا الاستخراج.

2D استخراج الملف الشخصي

نتائج

السطح الجانبي

اتجاه نسيج السطح ثلاثي الأبعاد

الخواص15.55%
الاتجاه الأول0.1617º
الاتجاه الثاني110.5º
الاتجاه الثالث171.5º

يمكن حساب مساحة السطح والحجم والخشونة والعديد من الأشياء الأخرى تلقائيًا من هذا الاستخراج.

2D استخراج الملف الشخصي

خاتمة

في هذا التطبيق ، أظهرنا كيف يمكن لمقياس ملف التعريف NANOVEA ST400 3D عدم التلامس أن يميز بدقة التضاريس الكاملة (ميزات النانو والجزئية والكلية) للسطح المكسور. من المنطقة ثلاثية الأبعاد ، يمكن تحديد السطح بوضوح ويمكن استخراج المناطق الفرعية أو الملامح / المقاطع العرضية بسرعة وتحليلها بقائمة لا نهائية من حسابات السطح. يمكن تحليل ميزات سطح النانومتر بشكل أكبر باستخدام وحدة AFM المدمجة.

بالإضافة إلى ذلك ، قامت NANOVEA بتضمين نسخة محمولة إلى تشكيلة Profilometer الخاصة بهم ، وهي مهمة بشكل خاص للدراسات الميدانية حيث يكون سطح الكسر غير متحرك. مع هذه القائمة الواسعة من إمكانيات قياس السطح ، لم يكن تحليل سطح الكسر أسهل وأكثر ملاءمة مع أداة واحدة.

الآن ، لنتحدث عن طلبك

تحليل سطح لدائن مدعمة بألياف زجاجية باستخدام قياس الأبعاد ثلاثي بالبروفايلو متر

طبوغرافيا سطح الألياف الزجاجية

استخدام القياس الشخصي ثلاثي الأبعاد

أُعدت بواسطة

كرايج للتنزه

مقدمة

الألياف الزجاجية مادة مصنوعة من ألياف زجاجية دقيقة للغاية. يتم استخدامه كعامل تقوية للعديد من منتجات البوليمر ؛ المادة المركبة الناتجة ، والمعروفة بشكل صحيح بالبوليمر المقوى بالألياف (FRP) أو البلاستيك المقوى بالزجاج (GRP) ، تسمى "الألياف الزجاجية" في الاستخدام الشائع.

أهمية الفحص المترولوجي السطحي لمراقبة الجودة

على الرغم من وجود العديد من الاستخدامات لتقوية الألياف الزجاجية ، إلا أنه من الضروري في معظم التطبيقات أن تكون قوية قدر الإمكان. تحتوي مركبات الألياف الزجاجية على واحدة من أعلى نسب القوة إلى الوزن المتاحة وفي بعض الحالات ، يكون الجنيه للرطل أقوى من الفولاذ. بصرف النظر عن القوة العالية ، من المهم أيضًا أن يكون لديك أصغر مساحة سطح مكشوفة ممكنة. يمكن لأسطح الألياف الزجاجية الكبيرة أن تجعل الهيكل أكثر عرضة للهجوم الكيميائي وربما توسع المواد. لذلك ، فإن فحص السطح أمر بالغ الأهمية لإنتاج مراقبة الجودة.

هدف القياس

في هذا التطبيق ، يتم استخدام NANOVEA ST400 لقياس الخشونة والتسطيح على سطح مركب من الألياف الزجاجية. من خلال قياس ميزات السطح هذه ، من الممكن إنشاء أو تحسين مادة مركبة من الألياف الزجاجية أقوى وأطول أمداً.

نانوفيا

ST400

معلمات القياس

مسبار 1 ملم
معدل الاستحواذ300 هرتز
متوسط1
قياس السطح5 مم × 2 مم
حجم الخطوة5 ميكرومتر × 5 ميكرومتر
وضع المسحسرعة ثابتة

مواصفات المسبار

قياس يتراوح1 ملم
قرار Z 25 نانومتر
دقة Z200 نانومتر
القرار الجانبي 2 ميكرومتر

نتائج

عرض اللون الكاذب

تسطيح السطح ثلاثي الأبعاد

خشونة السطح ثلاثية الأبعاد

سا15.716 ميكرومترمتوسط الارتفاع الحسابي
سكوير19.905 ميكرومترمتوسط الجذر التربيعي
Sp116.74 ميكرومترالحد الأقصى لارتفاع الذروة
سيفيرت136.09 ميكرومترأقصى ارتفاع للحفرة
س252.83 ميكرومترأقصى ارتفاع
SSK0.556انحراف
Ssu3.654التفرطح

خاتمة

كما هو موضح في النتائج، فإن جهاز NANOVEA ST400 البصري منشئ ملفات التعريف كان قادرًا على قياس خشونة واستواء السطح المركب من الألياف الزجاجية بدقة. يمكن قياس البيانات على دفعات متعددة من مركبات الألياف و/أو فترة زمنية معينة لتوفير معلومات مهمة حول عمليات تصنيع الألياف الزجاجية المختلفة وكيفية تفاعلها مع مرور الوقت. وبالتالي، يعد ST400 خيارًا قابلاً للتطبيق لتعزيز عملية مراقبة الجودة للمواد المركبة من الألياف الزجاجية.

الآن ، لنتحدث عن طلبك

ارتداء واحتكاك حزام البوليمر باستخدام الترايبومتر

أحزمة بوليمر

ارتدي واحتكاك باستخدام جهاز ثلاثي الأبعاد

أُعدت بواسطة

دوانجي لي ، دكتوراه

مقدمة

ينقل محرك الحزام الطاقة ويتتبع الحركة النسبية بين اثنين أو أكثر من أعمدة الدوران. كحل بسيط وغير مكلف مع الحد الأدنى من الصيانة ، تُستخدم محركات السيور على نطاق واسع في مجموعة متنوعة من التطبيقات ، مثل المناشير ، ومناشير الخشب ، والدرسات ، ومنفاخ الصوامع ، والناقلات. يمكن لمحركات الحزام حماية الماكينة من الحمل الزائد وكذلك الرطوبة وعزل الاهتزازات.

أهمية تقييم الارتداء للقيادة ذات الأحزمة

الاحتكاك والتآكل أمر لا مفر منه للأحزمة في آلة يحركها حزام. يضمن الاحتكاك الكافي نقلًا فعالًا للطاقة دون الانزلاق ، ولكن الاحتكاك المفرط قد يؤدي إلى تآكل الحزام بسرعة. تحدث أنواع مختلفة من الاهتراء مثل التعب والتآكل والاحتكاك أثناء تشغيل محرك الحزام. من أجل إطالة عمر الحزام وتقليل التكلفة والوقت على إصلاح واستبدال الحزام ، فإن التقييم الموثوق لأداء تآكل الأحزمة أمر مرغوب فيه لتحسين عمر الحزام وكفاءة الإنتاج وأداء التطبيق. القياس الدقيق لمعامل الاحتكاك ومعدل التآكل للحزام يسهل البحث والتطوير ومراقبة الجودة لإنتاج الحزام.

هدف القياس

في هذه الدراسة ، قمنا بمحاكاة ومقارنة سلوكيات ارتداء الأحزمة ذات القوام السطحي المختلف لعرض قدرة نانوفيا T2000 Tribometer في محاكاة عملية تآكل الحزام بطريقة محكومة ومراقب.

نانوفيا

T2000

إجرائات الإمتحان

تم تقييم معامل الاحتكاك ، COF ، ومقاومة التآكل لحزامين مع خشونة السطح المختلفة والملمس من خلال نانوفيا حمل زائد ثلاثي الأبعاد باستخدام وحدة التآكل الترددي الخطي. تم استخدام كرة فولاذية 440 (قطرها 10 مم) كمادة مضادة. تم فحص خشونة السطح ومسار التآكل باستخدام جهاز متكامل مقياس عدم الاتصال ثلاثي الأبعاد. معدل التآكل، ك، باستخدام الصيغة K = Vl (Fxs)، أين الخامس هو الحجم البالي ، F هو الحمل العادي و س هي المسافة المنزلقة.

 

يرجى ملاحظة أنه تم استخدام نظير كرة فولاذية 440 ملساء كمثال في هذه الدراسة ، يمكن تطبيق أي مادة صلبة ذات أشكال مختلفة وتشطيب سطحي باستخدام تركيبات مخصصة لمحاكاة حالة التطبيق الفعلية.

النتائج والمناقشة

يتميز الحزام المحكم والحزام الأملس بخشونة سطحية Ra تبلغ 33.5 و 8.7 um ، على التوالي ، وفقًا لمحات السطح التي تم تحليلها والتي تم التقاطها باستخدام نانوفيا 3D بروفايل بصري عدم الاتصال. تم قياس COF ومعدل التآكل للحزامين المختبرين عند 10 N و 100 N ، على التوالي ، لمقارنة سلوك تآكل الأحزمة عند الأحمال المختلفة.

شكل 1 يوضح تطور COF للأحزمة أثناء اختبارات التآكل. تُظهر الأحزمة ذات القوام المختلف سلوكيات تآكل مختلفة إلى حد كبير. من المثير للاهتمام أنه بعد فترة التشغيل التي يزداد فيها COF تدريجيًا ، يصل الحزام المحكم إلى COF أقل من 0.5 ~ في كلا الاختبارين اللذين تم إجراؤهما باستخدام أحمال 10 N و 100 N. يُظهر الحمل البالغ 10 نيوتن COF أعلى بكثير من ~ 1.4 عندما يصبح COF مستقرًا ويحتفظ فوق هذه القيمة لبقية الاختبار. تم اختبار الحزام الناعم الذي تم اختباره تحت حمولة 100 N سريعًا بواسطة الكرة الفولاذية 440 وشكل مسار تآكل كبير. لذلك توقف الاختبار عند 220 دورة.

شكل ١: تطور COF للأحزمة بأحمال مختلفة.

يقارن الشكل 2 صور مسار التآكل ثلاثية الأبعاد بعد الاختبارات عند 100 N. يوفر مقياس NANOVEA 3D غير المتصل بعدم التلامس أداة لتحليل الشكل التفصيلي لمسارات التآكل ، مما يوفر مزيدًا من التبصر في الفهم الأساسي لآلية التآكل.

الجدول 1: نتيجة تحليل مسار التآكل.

الشكل 2:  عرض ثلاثي الأبعاد للحزامين
بعد الاختبارات عند 100 N.

يسمح ملف مسار التآكل ثلاثي الأبعاد بتحديد مباشر ودقيق لحجم مسار التآكل المحسوب بواسطة برنامج التحليل المتقدم كما هو موضح في الجدول 1. في اختبار التآكل لـ 220 دورة ، يحتوي الحزام الناعم على مسار تآكل أكبر وأعمق بكثير بحجم 75.7 مم 3 ، مقارنة بحجم تآكل 14.0 مم 3 للحزام المحكم بعد اختبار تآكل 600 ثورة. يؤدي الاحتكاك العالي للحزام الناعم ضد الكرة الفولاذية إلى معدل تآكل أعلى بمقدار 15 ضعفًا مقارنة بالحزام المحكم.

 

من المحتمل أن يكون هذا الاختلاف الكبير في COF بين الحزام المحكم والحزام الأملس مرتبطًا بحجم منطقة التلامس بين الحزام والكرة الفولاذية ، مما يؤدي أيضًا إلى أداء التآكل المختلف. يوضح الشكل 3 مسارات التآكل للحزامين تحت المجهر البصري. يتوافق فحص مسار التآكل مع الملاحظة الخاصة بتطور COF: الحزام المحكم ، الذي يحافظ على انخفاض COF يبلغ 0.5 تقريبًا ، لا يُظهر أي علامة على التآكل بعد اختبار التآكل تحت حمولة 10 N. يظهر الحزام الناعم تآكلًا بسيطًا المسار عند 10 N. تخلق اختبارات التآكل التي تم إجراؤها عند 100 N مسارات تآكل أكبر بشكل كبير على كل من الأحزمة ذات النسيج الناعم والسلس ، وسيتم حساب معدل التآكل باستخدام ملفات التعريف ثلاثية الأبعاد كما سيتم مناقشته في الفقرة التالية.

الشكل 3:  قم بارتداء المسارات تحت المجهر الضوئي.

خاتمة

في هذه الدراسة ، عرضنا قدرة NANOVEA T2000 Tribometer في تقييم معامل الاحتكاك ومعدل تآكل الأحزمة بطريقة كمية وجيدة التحكم. يلعب نسيج السطح دورًا مهمًا في مقاومة الاحتكاك والتآكل للأحزمة أثناء أداء الخدمة. يُظهر الحزام المحكم معامل احتكاك ثابتًا يبلغ 0.5 تقريبًا ويمتلك عمرًا طويلاً ، مما يؤدي إلى تقليل الوقت والتكلفة في إصلاح أو استبدال الأداة. وبالمقارنة ، فإن الاحتكاك المفرط للحزام الأملس ضد الكرة الفولاذية يؤدي إلى تآكل الحزام بسرعة. علاوة على ذلك ، يعتبر التحميل على الحزام عاملاً حيويًا في مدة خدمته. يخلق الحمل الزائد احتكاكًا عاليًا جدًا ، مما يؤدي إلى تسريع تآكل الحزام.

يوفر NANOVEA T2000 Tribometer اختبارًا دقيقًا وقابلًا للتكرار للتآكل والاحتكاك باستخدام أوضاع الدوران والخطية المتوافقة مع ISO و ASTM ، مع تآكل اختياري بدرجة حرارة عالية ، ووحدات تزييت وتآكل ثلاثي متوفرة في نظام واحد متكامل مسبقًا. نانوفيا النطاق الذي لا مثيل له هو الحل المثالي لتحديد النطاق الكامل للخصائص الترايبولوجية للطلاءات الرقيقة أو السميكة أو الناعمة أو القاسية والأغشية والركائز.

الآن ، لنتحدث عن طلبك

البنية المجهرية الأحفورية باستخدام قياس الأبعاد ثلاثي بالبروفايلو متر

البنية المجهرية الأحفورية

استخدام القياس الشخصي ثلاثي الأبعاد

أُعدت بواسطة

دوانجي لي ، دكتوراه

مقدمة

الحفريات هي بقايا آثار النباتات والحيوانات والكائنات الحية الأخرى المحفوظة في الرواسب تحت البحار القديمة والبحيرات والأنهار. عادة ما تتحلل أنسجة الجسم الرخوة بعد الموت ، لكن الأصداف الصلبة والعظام والأسنان تتحجر. غالبًا ما يتم الحفاظ على ميزات سطح البنية المجهرية عند حدوث استبدال معدني للقشور والعظام الأصلية ، مما يوفر نظرة ثاقبة لتطور الطقس وآلية تكوين الأحافير.

أهمية مقياس التشكيل ثلاثي الأبعاد غير المتصل للفحص الأحفوري

تمكننا الملامح ثلاثية الأبعاد للأحفورة من مراقبة السمات السطحية التفصيلية للعينة الأحفورية من زاوية أقرب. قد لا يمكن تمييز الدقة العالية لمقياس ملف التعريف NANOVEA بالعين المجردة. يقدم برنامج تحليل الملف التعريفي مجموعة واسعة من الدراسات التي تنطبق على هذه الأسطح الفريدة. على عكس التقنيات الأخرى مثل مجسات اللمس، فإن تقنية NANOVEA مقياس عدم الاتصال ثلاثي الأبعاد يقيس ملامح السطح دون لمس العينة. وهذا يسمح بالحفاظ على السمات السطحية الحقيقية لبعض العينات الأحفورية الدقيقة. علاوة على ذلك، فإن مقياس الملف الشخصي Jr25 النموذجي المحمول يتيح القياس ثلاثي الأبعاد في المواقع الأحفورية، مما يسهل إلى حد كبير تحليل الحفريات وحمايتها بعد التنقيب.

هدف القياس

في هذه الدراسة ، يتم استخدام مقياس الملامح NANOVEA Jr25 لقياس سطح عينتين أحفوريتين تمثيليتين. تم مسح وتحليل كامل سطح كل أحفورة من أجل تحديد خصائص سطحها والتي تشمل الخشونة ، والكونتور ، واتجاه النسيج.

نانوفيا

الابن 25

براتشيوبود فوسيل

أول عينة أحفورية تم تقديمها في هذا التقرير هي أحفورة Brachiopod ، والتي جاءت من حيوان بحري له "صمامات" صلبة (قذائف) على سطحه العلوي والسفلي. ظهرت لأول مرة في العصر الكمبري ، أي منذ أكثر من 550 مليون سنة.

يظهر العرض ثلاثي الأبعاد للمسح في الشكل 1 ويظهر عرض الألوان الزائفة في الشكل 2. 

شكل ١: عرض ثلاثي الأبعاد لعينة أحافير Brachiopod.

الشكل 2: عرض لون كاذب لعينة أحافير Brachiopod.

تمت إزالة الشكل العام بعد ذلك من السطح من أجل فحص شكل السطح المحلي ومحيط أحفورة Brachiopod كما هو موضح في الشكل 3. يمكن الآن ملاحظة نسيج أخدود متباين غريب على عينة أحافير Brachiopod.

الشكل 3: عرض الألوان الزائفة وخطوط الكنتور عرض بعد إزالة النموذج.

يتم استخراج ملف تعريف الخط من المنطقة المنسوجة لإظهار عرض مقطعي للسطح الأحفوري في الشكل 4. تقيس دراسة ارتفاع الخطوة الأبعاد الدقيقة لميزات السطح. يبلغ متوسط عرض الأخاديد 0.38 مم وعمق ~ 0.25 مم.

الشكل 4: ملف تعريف الخط ودراسات ارتفاع الخطوة للسطح المحكم.

كرينويد الجذعية الأحفورية

العينة الأحفورية الثانية هي أحفورة جذعية كرينويدية. ظهرت Crinoids لأول مرة في بحار العصر الكمبري الأوسط ، قبل حوالي 300 مليون سنة من الديناصورات. 

 

يظهر العرض ثلاثي الأبعاد للمسح في الشكل 5 ويظهر عرض الألوان الزائفة في الشكل 6. 

الشكل 5: عرض ثلاثي الأبعاد لعينة أحفورية كرينويد.

تم تحليل خواص نسيج السطح وخشونة أحفورة ساق Crinoid في الشكل 7. 

 هذه الأحفورة لها اتجاه نسيج تفضيلي في زاوية قريبة من 90 درجة ، مما يؤدي إلى تماثل خواص الملمس بمقدار 69%.

الشكل 6: عرض اللون الزائف لملف جذع Crinoid عينة.

 

الشكل 7: نسيج السطح خواص وخشونة أحفورة ساق Crinoid.

يظهر المظهر الجانبي ثنائي الأبعاد على طول الاتجاه المحوري لحفورة جذع Crinoid في الشكل 8. 

حجم قمم نسيج السطح موحد إلى حد ما.

الشكل 8: تحليل الملف الشخصي ثنائي الأبعاد لأحفوري ساق Crinoid.

خاتمة

في هذا التطبيق ، درسنا بشكل شامل الميزات السطحية ثلاثية الأبعاد لحفورة جذعية Brachiopod و Crinoid باستخدام مقياس التشكيل الجانبي المحمول غير المتصل NANOVEA Jr25. نعرض أن الأداة يمكن أن تميز بدقة التشكل ثلاثي الأبعاد لعينات الأحافير. ثم يتم تحليل سمات السطح المثير للاهتمام وملمس العينات. تمتلك عينة Brachiopod نسيج أخدود متباين ، بينما تُظهر أحافير جذع Crinoid تباينًا تفضيليًا للنسيج. أثبتت عمليات المسح السطحي ثلاثية الأبعاد المفصلة والدقيقة أنها أدوات مثالية لعلماء الحفريات والجيولوجيين لدراسة تطور الحياة وتكوين الأحافير.

تمثل البيانات الموضحة هنا جزءًا فقط من الحسابات المتوفرة في برنامج التحليل. تقيس مقاييس ملف تعريف NANOVEA أي سطح تقريبًا في المجالات بما في ذلك أشباه الموصلات ، والإلكترونيات الدقيقة ، والطاقة الشمسية ، والألياف البصرية ، والسيارات ، والفضاء ، والمعادن ، والآلات ، والطلاء ، والأدوية ، والطب الحيوي ، والبيئة وغيرها الكثير.

الآن ، لنتحدث عن طلبك

الانتهاء من سطح الجلد المعالج باستخدام 3D Profilometry

جلد معالج

تشطيب السطح باستخدام قياس الأبعاد ثلاثي الأبعاد

أُعدت بواسطة

كرايج للتنزه

مقدمة

بمجرد اكتمال عملية دباغة جلد الجلد ، يمكن أن يخضع سطح الجلد لعدة عمليات تشطيب لمجموعة متنوعة من الأشكال واللمس. يمكن أن تشمل هذه العمليات الميكانيكية التمدد ، والتلميع ، والصنفرة ، والنقش ، والطلاء وما إلى ذلك ، اعتمادًا على الاستخدام النهائي للجلد ، قد يتطلب البعض معالجة أكثر دقة وتحكمًا وقابلة للتكرار.

أهمية فحص الملف الشخصي للبحث والتطوير ومراقبة الجودة

نظرًا للاختلاف الكبير وعدم موثوقية طرق الفحص البصري ، يمكن للأدوات القادرة على تحديد ميزات المقاييس الدقيقة والنانوية بدقة تحسين عمليات تشطيب الجلد. يمكن أن يؤدي فهم تشطيب سطح الجلد بمعنى قابل للقياس الكمي إلى تحسين اختيار معالجة السطح المستند إلى البيانات لتحقيق نتائج إنهاء مثالية. NANOVEA 3D عدم الاتصال بروفایلومتر استخدام تقنية متحد البؤر لونية لقياس الأسطح الجلدية النهائية وتقديم أعلى مستوى من التكرار والدقة في السوق. عندما تفشل التقنيات الأخرى في توفير بيانات موثوقة ، بسبب ملامسة المسبار ، أو اختلاف السطح ، أو الزاوية ، أو الامتصاص أو الانعكاس ، تنجح NANOVEA Profilometers.

هدف القياس

في هذا التطبيق ، يتم استخدام NANOVEA ST400 لقياس ومقارنة تشطيب السطح لعينتين مختلفتين من الجلد ولكن تمت معالجتهما عن كثب. يتم حساب العديد من معلمات السطح تلقائيًا من ملف تعريف السطح.

سنركز هنا على خشونة السطح ، وعمق الغمازة ، ودرجة الغمازة ، وقطر الغمازة للتقييم المقارن.

نانوفيا

ST400

النتائج: عينة 1

ISO 25178

معلمات الارتفاع

معلمات ثلاثية الأبعاد أخرى

النتائج: العينة 2

ISO 25178

معلمات الارتفاع

معلمات ثلاثية الأبعاد أخرى

مقارنة العمق

توزيع العمق لكل عينة.
لوحظ عدد كبير من الدمامل العميقة في
عينة 1.

مقارنة الملعب

الملعب بين الدمامل على عينة 1 أصغر قليلاً
من
عينة 2، ولكن كلاهما لهما توزيع مماثل

 مقارنة القطر

توزيعات مماثلة لمتوسط قطر الدمامل ،
مع
عينة 1 عرض متوسط أقطار أصغر قليلاً في المتوسط.

خاتمة

في هذا التطبيق ، أظهرنا كيف يمكن لمقياس الملامح NANOVEA ST400 3D أن يميز بدقة تشطيب سطح الجلد المعالج. في هذه الدراسة ، سمحت لنا القدرة على قياس خشونة السطح ، وعمق الغمازة ، ونغمة الغمازة ، وقطر الغمازة بتحديد الاختلافات بين النهاية وجودة العينتين التي قد لا تكون واضحة من خلال الفحص البصري.

بشكل عام ، لم يكن هناك اختلاف واضح في مظهر عمليات المسح ثلاثية الأبعاد بين العينة 1 والعينة 2. ومع ذلك ، في التحليل الإحصائي ، هناك تمييز واضح بين العينتين. النموذج 1 يحتوي على كمية أكبر من الدمامل بأقطار أصغر ، وأعماق أكبر ونغمة أصغر من الدمامل إلى الدمامل مقارنةً بالنموذج 2.

يرجى ملاحظة أن هناك دراسات إضافية متاحة. يمكن تحليل مجالات الاهتمام الخاصة بشكل أكبر باستخدام وحدة AFM أو وحدة ميكروسكوب متكاملة. تتراوح سرعات NANOVEA 3D Profilometer من 20 مم / ثانية إلى 1 م / ث للمختبر أو البحث لتلبية احتياجات الفحص عالي السرعة ؛ يمكن بناؤها باستخدام أحجام مخصصة أو سرعات أو إمكانيات مسح ضوئي أو امتثال للغرفة النظيفة من الفئة 1 أو ناقل فهرسة أو للتكامل المباشر أو عبر الإنترنت.

الآن ، لنتحدث عن طلبك

طبوغرافيا السطح العضوي باستخدام مقياس الملامح المحمول ثلاثي الأبعاد

طبوغرافيا الأسطح العضوية

استخدام جهاز قياس ثلاثي الأبعاد محمول

أُعدت بواسطة

كرايج للتنزه

مقدمة

أصبحت الطبيعة مصدر إلهام حيوي لتطوير بنية السطح المحسنة. أدى فهم الهياكل السطحية الموجودة في الطبيعة إلى دراسات الالتصاق بناءً على أقدام الوزغة ، ودراسات المقاومة المستندة إلى دراسات التغير النسيجي وخيار البحر المستندة إلى الأوراق ، من بين العديد من الدراسات الأخرى. تحتوي هذه الأسطح على عدد من التطبيقات المحتملة من الطب الحيوي إلى الملابس والسيارات. لكي تنجح أي من هذه الاختراقات السطحية ، يجب تطوير تقنيات التصنيع بحيث يمكن محاكاة خصائص السطح وإعادة إنتاجها. هذه هي العملية التي ستتطلب التحديد والتحكم.

أهمية ملف التعريف البصري ثلاثي الأبعاد المحمول غير المتصل للأسطح العضوية

باستخدام تقنية الضوء اللوني، فإن جهاز NANOVEA Jr25 المحمول ملف التعريف البصري يتمتع بقدرة فائقة على قياس أي مادة تقريبًا. يتضمن ذلك الزوايا الفريدة والحادة والأسطح العاكسة والممتصة الموجودة ضمن مجموعة واسعة من خصائص الأسطح الطبيعية. توفر قياسات عدم الاتصال ثلاثية الأبعاد صورة ثلاثية الأبعاد كاملة لإعطاء فهم أكثر اكتمالاً لميزات السطح. وبدون القدرات ثلاثية الأبعاد، فإن تحديد أسطح الطبيعة سيعتمد فقط على المعلومات ثنائية الأبعاد أو التصوير المجهري، الذي لا يوفر معلومات كافية لتقليد السطح الذي تمت دراسته بشكل صحيح. إن فهم النطاق الكامل لخصائص السطح بما في ذلك الملمس والشكل والأبعاد، من بين أشياء أخرى كثيرة، سيكون أمرًا بالغ الأهمية لنجاح التصنيع.

إن القدرة على الحصول بسهولة على نتائج ذات جودة معملية في هذا المجال تفتح الباب لفرص بحثية جديدة.

هدف القياس

في هذا التطبيق ، فإن ملف نانوفيا يستخدم Jr25 لقياس سطح الورقة. توجد قائمة لا حصر لها من معلمات السطح التي يمكن حسابها تلقائيًا بعد المسح السطحي ثلاثي الأبعاد.

هنا سنراجع السطح ثلاثي الأبعاد ونختار
مجالات الاهتمام لمزيد من التحليل ، بما في ذلك
تحديد وفحص خشونة السطح والقنوات والتضاريس

نانوفيا

جي آر 25

شروط الاختبار

عمق المستقبل

متوسط كثافة الأخاديد: 16.471 سم / سم 2
متوسط عمق الأخاديد: 97.428 ميكرومتر
أقصى عمق: 359.769 ميكرومتر

خاتمة

في هذا التطبيق ، أظهرنا كيف أن ملف نانوفيا يمكن لملف التعريف البصري ثلاثي الأبعاد المحمول Jr25 أن يميز بدقة كلا من الطبوغرافيا وتفاصيل مقياس النانومتر لسطح الورقة في الحقل. من خلال قياسات السطح ثلاثية الأبعاد هذه ، يمكن تحديد مجالات الاهتمام بسرعة ثم تحليلها بقائمة من الدراسات التي لا نهاية لها (الأبعاد ، ملمس النهاية الخشنة ، تضاريس شكل الشكل ، تسطيح صفحة الالتواء ، مستوية الحجم ، منطقة الحجم ، ارتفاع الخطوة و اخرين). يمكن اختيار المقطع العرضي ثنائي الأبعاد بسهولة لتحليل مزيد من التفاصيل. باستخدام هذه المعلومات ، يمكن فحص الأسطح العضوية على نطاق واسع باستخدام مجموعة كاملة من موارد قياس السطح. كان من الممكن إجراء مزيد من التحليل لمجالات الاهتمام الخاصة باستخدام وحدة AFM المدمجة على نماذج سطح الطاولة.

نانوفيا تقدم أيضًا أجهزة قياس الملامح المحمولة عالية السرعة للبحث الميداني ومجموعة واسعة من الأنظمة القائمة على المعامل ، فضلاً عن توفير خدمات المختبرات.

الآن ، لنتحدث عن طلبك

مقياس خشونة ورق الصنفرة

ورق الصنفرة: تحليل الخشونة وقطر الجسيمات

ورق الصنفرة: تحليل الخشونة وقطر الجسيمات

يتعلم أكثر

ورق زجاج

تحليل الخشونة وقطر الجسيمات

أُعدت بواسطة

فرانك ليو

مقدمة

ورق الصنفرة منتج شائع متوفر تجاريًا يستخدم كمادة كاشطة. الاستخدام الأكثر شيوعًا لورق الصنفرة هو إزالة الطلاء أو تلميع السطح بخصائصه الكاشطة. يتم تصنيف هذه الخصائص الكاشطة إلى حبيبات ، كل منها مرتبط بمدى سلاسة أو
خشن من السطح سوف يعطي. لتحقيق الخصائص الكاشطة المرغوبة ، يجب على مصنعي ورق الصنفرة التأكد من أن الجسيمات الكاشطة ذات حجم معين ولها انحراف ضئيل. لتحديد جودة ورق الصنفرة ، NANOVEA's 3D Non-Contact مقياس الملامح يمكن استخدامها للحصول على معامل الارتفاع الحسابي (Sa) ومتوسط قطر الجسيمات لمنطقة العينة.

أهمية ملف التعريف البصري ثلاثي الأبعاد غير المتصل لـ SANDPAPER

عند استخدام ورق الصنفرة ، يجب أن يكون التفاعل بين الجزيئات الكاشطة والسطح الذي يتم صنفرته منتظمًا للحصول على تشطيبات متناسقة للسطح. لتقدير ذلك ، يمكن ملاحظة سطح ورق الصنفرة باستخدام ملف التعريف البصري ثلاثي الأبعاد غير المتصل من NANOVEA لمعرفة الانحرافات في أحجام الجسيمات والارتفاعات والتباعد.

هدف القياس

في هذه الدراسة ، تم العثور على خمس حبيبات مختلفة من ورق الصنفرة (120 ،
180 ، 320 ، 800 ، و 2000) بامتداد
NANOVEA ST400 3D ملف التعريف البصري عدم الاتصال.
يتم استخراج Sa من المسح والجسيمات
يتم حساب الحجم عن طريق إجراء تحليل الزخارف إلى
العثور على قطرها المكافئ

نانوفيا

ST400

النتائج والمناقشة

يتناقص ورق الصنفرة في خشونة السطح (Sa) وحجم الجسيمات مع زيادة الحبيبات ، كما هو متوقع. تراوح Sa من 42.37 ميكرومتر إلى 3.639 ميكرومتر. يتراوح حجم الجسيمات من 127 ± 48.7 إلى 21.27 ± 8.35. تخلق الجسيمات الأكبر والاختلافات المرتفعة تأثيرًا كاشطًا أقوى على الأسطح بدلاً من الجزيئات الأصغر مع اختلاف الارتفاع المنخفض.
يرجى ملاحظة أن جميع تعريفات معلمات الارتفاع المحددة مدرجة في الصفحة.

الجدول 1: مقارنة بين حبيبات ورق الصنفرة ومعلمات الارتفاع.

الجدول 2: مقارنة بين حبيبات ورق الصنفرة وقطر الجسيمات.

عرض ثنائي وثلاثي الأبعاد للوردي 

فيما يلي عرض الألوان الزائفة والأبعاد الثلاثية لعينات ورق الصنفرة.
تم استخدام مرشح غاوسي 0.8 مم لإزالة الشكل أو التموج.

تحليل الصورة

للعثور على الجسيمات الموجودة على السطح بدقة ، تم إعادة تحديد عتبة مقياس الارتفاع لإظهار الطبقة العليا من ورق الصنفرة فقط. ثم تم إجراء تحليل الزخارف للكشف عن القمم.

خاتمة

تم استخدام ملف التعريف البصري ثلاثي الأبعاد غير المتصل من NANOVEA لفحص الخصائص السطحية لمختلف حبيبات ورق الصنفرة نظرًا لقدرتها على مسح الأسطح بميزات دقيقة ومتناهية الصغر.

تم الحصول على معلمات ارتفاع السطح وأقطار الجسيمات المكافئة من كل عينة من عينات ورق الصنفرة باستخدام برنامج متقدم لتحليل عمليات المسح ثلاثية الأبعاد. لوحظ أنه مع زيادة حجم الحبيبات ، تقل خشونة السطح (Sa) وحجم الجسيمات كما هو متوقع.

الآن ، لنتحدث عن طلبك

قياس حدود سطح الستايروفوم

قياس حدود السطح

قياس حدود السطح باستخدام مقياس التشكيل الجانبي ثلاثي الأبعاد

يتعلم أكثر

قياس الحدود السطحية

استخدام القياس الشخصي ثلاثي الأبعاد

أُعدت بواسطة

كريج ليزينج

مقدمة

في الدراسات التي يتم فيها تقييم واجهة ميزات السطح والأنماط والأشكال وما إلى ذلك ، من أجل الاتجاه ، سيكون من المفيد تحديد مجالات الاهتمام بسرعة على ملف تعريف القياس بأكمله. من خلال تقسيم السطح إلى مناطق مهمة ، يمكن للمستخدم تقييم الحدود والقمم والحفر والمساحات والأحجام والعديد من الأشياء الأخرى بسرعة لفهم دورها الوظيفي في ملف تعريف السطح بأكمله قيد الدراسة. على سبيل المثال ، مثل تصوير حدود الحبوب للمعادن ، تكمن أهمية التحليل في واجهة العديد من الهياكل وتوجهها العام. من خلال فهم كل مجال من مجالات الاهتمام ، يمكن تحديد العيوب و / أو الشذوذ داخل المنطقة الكلية. على الرغم من أن تصوير حدود الحبوب يُدرس عادةً في نطاق يتجاوز قدرة مقياس ملف التعريف ، وهو مجرد تحليل للصور ثنائية الأبعاد ، إلا أنه مرجع مفيد لتوضيح مفهوم ما سيتم عرضه هنا على نطاق أوسع جنبًا إلى جنب مع مزايا قياس السطح ثلاثي الأبعاد.

أهمية مقياس التشكيل ثلاثي الأبعاد غير المتصل لدراسة فصل السطح

على عكس التقنيات الأخرى مثل مجسات اللمس أو قياس التداخل، فإن مقياس عدم الاتصال ثلاثي الأبعاد، باستخدام اللوني المحوري، يمكنه قياس أي سطح تقريبًا، ويمكن أن تختلف أحجام العينات بشكل كبير بسبب التدريج المفتوح وليس هناك حاجة لإعداد العينة. يتم الحصول على النانو من خلال النطاق الكلي أثناء قياس المظهر الجانبي للسطح بدون أي تأثير من انعكاس العينة أو الامتصاص، وله قدرة متقدمة على قياس زوايا السطح العالية ولا يوجد أي معالجة برمجية للنتائج. قم بقياس أي مادة بسهولة: شفافة، معتمة، براق، منتشر، مصقول، خشن وما إلى ذلك. توفر تقنية مقياس عدم الاتصال قدرة مثالية وواسعة وسهلة الاستخدام لتحقيق أقصى قدر من الدراسات السطحية عندما تكون هناك حاجة إلى تحليل حدود السطح؛ إلى جانب فوائد القدرة المدمجة ثنائية وثلاثية الأبعاد.

هدف القياس

في هذا التطبيق ، يتم استخدام مقياس التشكيل الجانبي Nanovea ST400 لقياس مساحة سطح الستايروفوم. تم إنشاء الحدود من خلال الجمع بين ملف الكثافة المنعكس جنبًا إلى جنب مع التضاريس ، والتي يتم الحصول عليها في وقت واحد باستخدام NANOVEA ST400. ثم تم استخدام هذه البيانات لحساب معلومات الشكل والحجم المختلفة لكل "حبة" ستايروفوم.

نانوفيا

ST400

النتائج والمناقشة: قياس حدود السطح ثنائي الأبعاد

صورة الطبوغرافيا (أسفل اليسار) مقنعة بواسطة صورة الكثافة المنعكسة (أسفل اليمين) لتحديد حدود الحبوب بوضوح. تم تجاهل جميع الحبوب التي يقل قطرها عن 565 ميكرومتر عن طريق تطبيق مرشح.

العدد الإجمالي للحبوب: 167
إجمالي المساحة المتوقعة التي تشغلها الحبوب: 166.917 ملم مربع (64.5962 %)
إجمالي المساحة المتوقعة التي تشغلها الحدود: (35.4038 %)
كثافة الحبوب: 0.646285 حبة / مم 2

المساحة = 0.999500 ملم² +/- 0.491846 ملم²
المحيط = 9114.15 ميكرومتر +/- 4570.38 ميكرومتر
القطر المكافئ = 1098.61 ميكرومتر +/- 256.235 ميكرومتر
متوسط القطر = 945.373 ميكرومتر +/- 248.344 ميكرومتر
الحد الأدنى للقطر = 675.898 ميكرومتر +/- 246.850 ميكرومتر
أقصى قطر = 1312.43 ميكرومتر +/- 295.258 ميكرومتر

النتائج والمناقشة: قياس حدود السطح ثلاثي الأبعاد

باستخدام بيانات الطبوغرافيا ثلاثية الأبعاد التي تم الحصول عليها ، يمكن تحليل الحجم والارتفاع والذروة ونسبة العرض إلى الارتفاع ومعلومات الشكل العام على كل حبة. إجمالي المساحة ثلاثية الأبعاد المشغولة: 2.525 مم 3

خاتمة

في هذا التطبيق ، أظهرنا كيف يمكن لمقياس NANOVEA 3D Non Contact Profilometer أن يميز بدقة سطح الستايروفوم. يمكن الحصول على المعلومات الإحصائية على كامل سطح الاهتمام أو على الحبوب الفردية ، سواء كانت قمم أو حفر. في هذا المثال ، تم استخدام جميع الحبوب الأكبر من الحجم المحدد من قبل المستخدم لإظهار المنطقة والمحيط والقطر والارتفاع. يمكن أن تكون الميزات الموضحة هنا حاسمة للبحث ومراقبة الجودة للأسطح الطبيعية والمُصنَّعة مسبقًا بدءًا من تطبيقات الطب الحيوي إلى تطبيقات الآلات الدقيقة جنبًا إلى جنب مع العديد من التطبيقات الأخرى. 

الآن ، لنتحدث عن طلبك