美国/全球:+1-949-461-9292
欧洲。+39-011-3052-794
联系我们

地板的渐进式摩擦学图谱

人的运动、家具的移动和其他日常活动使地板的性能不断下降。地板通常由木材、陶瓷或石材组成,必须能够处理它们所设计的磨损和撕裂,无论是住宅还是商业应用。出于这个原因,大多数地板都有一个抗磨损层,称为耐磨层。耐磨层的厚度和耐用性将取决于地板的类型和它将接受的人流量。由于地板可以有多层(如UV涂层、耐磨层、装饰层、釉面等),每层的磨损率可能非常不同。使用Nanovea T2000摩擦仪和3D非接触线传感器附件,可以密切观察石材和木地板的磨损过程。

地板的渐进式摩擦学图谱

通过纳米压痕对胶带的粘附性进行分析

胶带的有效性是由其内聚力和粘合力决定的。内聚力是指胶带的内部强度,而粘附力是指胶带与其相互作用的表面的粘合能力。胶带的粘附力受到许多因素的影响,如施加的压力、表面能量、分子力和表面纹理。 [1].为了量化胶带的附着力,可以用Nanovea机械测试仪的纳米模块进行纳米压痕,测量压头与胶带分离所需的功。

通过纳米压痕对胶带的粘附性进行分析

用电导率仪对电线进行疲劳测试

电线是电气设备之间最常见的互连形式。电线通常由铜(有时是铝)制成,因为铜的导电能力非常好,能够弯曲,而且成本便宜。除了材料之外,电线还可以用不同的方式进行组装。电线可以获得不同的尺寸,通常用线径表示。随着电线直径的增加,电线规格也随之减少。电线的寿命会随着线规的变化而变化。寿命的差异可以通过用Nanovea摩擦仪进行往复式线性测试来模拟疲劳进行比较。

用电导率仪对电线进行疲劳测试

多层薄膜的划痕测试

涂料广泛用于多个行业,以保护底层,创建电子装置,或改善材料的表面特性。由于其众多的用途,涂层被广泛地研究,但其机械性能可能难以理解。涂层的失效可能发生在微/纳米范围内,原因是表面与大气的相互作用、内聚失效以及基材与表面的不良粘附。测试涂层失效的一个一致的方法是划痕测试。通过施加逐渐增加的负载,涂层的内聚(如开裂)和粘合(如分层)失效可以被定量比较。

多层薄膜的划痕测试

循环纳米压痕应力-应变测量

循环纳米压痕应力-应变测量

了解更多

 

纳米压痕的重要性

通过以下方式获得的连续刚度测量(CSM) 纳米压痕 用微创的方法揭示材料的应力-应变关系。与传统的拉伸测试方法不同,纳米压痕提供纳米级的应力-应变数据,而不需要大型仪器。应力-应变曲线提供了关于样品在承受越来越大的载荷时弹性和塑性行为之间的阈值的关键信息。CSM提供了在没有危险设备的情况下确定材料的屈服应力的能力。

 

纳米压痕提供了一种可靠的和用户友好的方法来快速调查应力-应变数据。此外,在纳米尺度上测量应力-应变行为使研究材料中的小涂层和颗粒的重要特性成为可能,因为它们变得更加先进。除了硬度、弹性模量、蠕变、断裂韧性等,纳米压痕还能提供弹性极限和屈服强度的信息,使其成为一种多功能的计量仪器。

在这项研究中,纳米压痕提供的应力-应变数据确定了材料的弹性极限,同时只进入了1.2微米的表面。我们使用CSM来确定材料的机械性能是如何随着压头进入表面的深度而发展的。这在薄膜应用中特别有用,因为其特性可能取决于深度。纳米压痕是一种确认测试样品中材料特性的微创方法。

CSM试验在测量材料特性与深度的关系方面很有用。循环试验可以在恒定载荷下进行,以确定更复杂的材料特性。这对于研究疲劳或消除孔隙率的影响以获得真正的弹性模量是很有用的。

测量目标

在这个应用中,Nanovea机械测试仪使用CSM来研究硬度和弹性模量与深度的关系以及标准钢样品的应力-应变数据。钢被选择为其普遍认可的特性,以显示纳米级应力-应变数据的控制和准确性。一个半径为5微米的球形尖端被用来达到足够高的应力,超过钢的弹性极限。

 

测试条件和程序

使用了以下压痕参数。

结果。

 

振荡过程中负载的增加提供了以下深度与负载的曲线。在加载过程中进行了100多次振荡,以找到压头穿透材料时的应力-应变数据。

 

我们从每个周期获得的信息中确定应力和应变。每个周期的最大载荷和深度使我们能够计算出每个周期施加在材料上的最大应力。应变是由每个周期的部分卸载后的残留深度计算出来的。这使我们可以通过除以尖端的半径来计算残留印记的半径,从而得到应变系数。绘制材料的应力与应变的关系图显示了弹性区和塑性区以及相应的弹性极限应力。我们的测试确定材料的弹性区和塑性区之间的过渡是在0.076左右的应变,弹性极限为1.45GPa。

每个周期作为一个单一的压痕,所以当我们增加负载时,我们在钢中的不同控制深度进行测试。因此,硬度和弹性模量与深度的关系可以直接从每个周期获得的数据中绘制出来。

随着压头进入材料,我们看到硬度增加,弹性模量减少。

总结

我们已经证明Nanovea机械测试仪提供可靠的应力-应变数据。使用带有CSM压痕的球形尖端,可以在增加的应力下进行材料性能测量。负载和压头半径可以改变,以便在受控深度测试各种材料。Nanovea机械测试仪提供这些压痕测试,从亚mN范围到400N。