주기적 나노 인덴테이션 응력-변형 측정
주기적 나노 인덴테이션 응력-변형 측정
자세히 알아보기
나노인덴테이션의 중요성
다음에 의해 얻은 연속 강성 측정(CSM) 나노 인덴테이션 최소 침습적 방법으로 재료의 응력-변형 관계를 보여줍니다. 기존의 인장 시험 방법과 달리 나노인덴테이션은 대형 장비 없이도 나노 스케일의 응력-변형 데이터를 제공합니다. 응력-변형 곡선은 샘플이 증가하는 하중에 따라 탄성과 소성 거동 사이의 임계값에 대한 중요한 정보를 제공합니다. CSM은 위험한 장비 없이 재료의 항복 응력을 결정할 수 있는 기능을 제공합니다.
나노인덴테이션은 응력-변형 데이터를 신속하게 조사할 수 있는 신뢰할 수 있고 사용자 친화적인 방법을 제공합니다. 또한 나노 스케일에서 응력-변형 거동을 측정하면 재료의 작은 코팅과 입자에 대한 중요한 특성을 연구할 수 있어 재료가 더욱 발전함에 따라 중요한 특성을 연구할 수 있습니다. 나노인덴테이션은 경도, 탄성 계수, 크리프, 파괴 인성 등 외에도 탄성 한계 및 항복 강도에 대한 정보를 제공하므로 다목적 계측 장비로 사용할 수 있습니다.
이 연구에서 나노 압입이 제공하는 응력-변형 데이터는 표면으로 1.2마이크론만 이동하면서 재료의 탄성 한계를 식별합니다. CSM을 사용하여 압자가 표면 깊숙이 이동함에 따라 재료의 기계적 특성이 어떻게 발전하는지 확인합니다. 이는 특성이 깊이에 따라 달라질 수 있는 박막 응용 분야에서 특히 유용합니다. 나노인덴테이션은 테스트 샘플에서 재료 특성을 확인하는 최소 침습적 방법입니다.
CSM 테스트는 재료 특성 대 깊이를 측정하는 데 유용합니다. 일정한 하중에서 주기적 테스트를 수행하여 보다 복잡한 재료 특성을 결정할 수 있습니다. 이는 피로를 연구하거나 다공성의 영향을 제거하여 실제 탄성 계수를 얻는 데 유용할 수 있습니다.
측정 목표
이 응용 분야에서 나노베아 기계식 테스터는 CSM을 사용하여 표준 강철 샘플의 경도 및 탄성 계수 대 깊이 및 응력-변형률 데이터를 연구합니다. 나노 스케일 응력-변형률 데이터의 제어 및 정확성을 표시하기 위해 일반적으로 알려진 특성으로 강철이 선택되었습니다. 강철의 탄성 한계를 넘어서는 높은 응력에 도달하기 위해 반경이 5마이크론인 구형 팁을 사용했습니다.
테스트 조건 및 절차
다음과 같은 들여쓰기 매개변수가 사용되었습니다:
결과:
진동 중 하중이 증가하면 다음과 같은 깊이 대 하중 곡선이 제공됩니다. 압자가 재료를 관통할 때 응력-변형률 데이터를 찾기 위해 하중을 가하는 동안 100회 이상의 진동을 수행했습니다.
각 사이클에서 얻은 정보로부터 응력과 변형을 측정했습니다. 각 사이클의 최대 하중과 깊이를 통해 각 사이클에서 재료에 가해지는 최대 응력을 계산할 수 있습니다. 변형은 부분 언로딩에서 각 사이클의 잔류 깊이에서 계산됩니다. 이를 통해 팁의 반경을 변형 계수로 나누어 잔류 임프린트의 반경을 계산할 수 있습니다. 재료의 응력 대 변형률을 플롯하면 해당 탄성 한계 응력이 있는 탄성 및 플라스틱 영역이 표시됩니다. 테스트 결과, 소재의 탄성 영역과 소성 영역 사이의 전이는 약 0.076 변형률, 탄성 한계는 1.45 GPa로 확인되었습니다.
각 사이클은 하나의 압입으로 작용하므로 하중을 증가시키면서 강철의 다양한 제어된 깊이에서 테스트를 실행합니다. 따라서 각 사이클에 대해 얻은 데이터에서 경도 및 탄성 계수 대 깊이를 직접 플롯할 수 있습니다.
압자가 재료로 이동함에 따라 경도가 증가하고 탄성 계수가 감소하는 것을 볼 수 있습니다.
결론
나노베아 기계식 테스터는 신뢰할 수 있는 응력-변형률 데이터를 제공합니다. CSM 압입이 있는 구형 팁을 사용하면 응력이 증가된 상태에서 재료 특성을 측정할 수 있습니다. 하중 및 압입 반경을 변경하여 다양한 재료를 제어된 깊이에서 테스트할 수 있습니다. 나노베아 기계식 테스터는 mN 미만 범위에서 400N까지 이러한 압입 테스트를 제공합니다.
카테고리
- 애플리케이션 노트
- 링 마찰력 차단
- 부식 마찰학
- 마찰 테스트 | 마찰 계수
- 고온 기계 테스트
- 고온 마찰학
- 습도 및 가스 마찰학
- 습도 기계적 테스트
- 들여쓰기 | 크립 및 릴랙스
- 압흔 | 파단 인성
- 들여쓰기 | 경도 및 탄성
- 들여쓰기 | 분실 및 보관
- 들여쓰기 | 스트레스 대 변형
- 압흔 | 수율 강도 및 피로도
- 실험실 테스트
- 선형 마찰학
- 액체 기계 테스트
- 액체 마찰학
- 저온 마찰학
- 기계적 테스트
- 보도 자료
- 프로파일 측정 | 평탄도 및 휨
- 프로파일 측정 | 기하학 및 도형
- 프로파일 측정 | 거칠기 및 마감
- 프로파일 측정 | 스텝 높이 및 두께
- 프로파일 측정 | 텍스처 및 그레인
- 프로파일 측정 | 부피 및 면적
- 프로파일 측정 테스트
- 링 온 링 마찰학
- 회전 마찰학
- 스크래치 테스트 | 접착 실패
- 스크래치 테스트 | 응집력 실패
- 스크래치 테스트 | 멀티 패스 마모
- 스크래치 테스트 | 스크래치 경도
- 스크래치 테스트 마찰학
- 트레이드쇼
- 마찰 테스트
- 분류
보관함
- 2023년 9월
- 2023년 8월
- 2023년 6월
- 2023년 5월
- 2022년 7월
- 2022년 5월
- 2022년 4월
- 2022년 1월
- 2021년 12월
- 2021년 11월
- 2021년 10월
- 2021년 9월
- 2021년 8월
- 2021년 7월
- 2021년 6월
- 2021년 5월
- 2021년 3월
- 2021년 2월
- 2020년 12월
- 2020년 11월
- 2020년 10월
- 2020년 9월
- 2020년 7월
- 2020년 5월
- 2020년 4월
- 2020년 3월
- 2020년 2월
- 2020년 1월
- 2019년 11월
- 2019년 10월
- 2019년 9월
- 2019년 8월
- 2019년 7월
- 2019년 6월
- 2019년 5월
- 2019년 4월
- 2019년 3월
- 2019년 1월
- 2018년 12월
- 2018년 11월
- 2018년 10월
- 2018년 9월
- 2018년 7월
- 2018년 6월
- 2018년 5월
- 2018년 4월
- 2018년 3월
- 2018년 2월
- 2017년 11월
- 2017년 10월
- 2017년 9월
- 2017년 8월
- 2017년 6월
- 2017년 5월
- 2017년 4월
- 2017년 3월
- 2017년 2월
- 2017년 1월
- 2016년 11월
- 2016년 10월
- 2016년 8월
- 2016년 7월
- 2016년 6월
- 2016년 5월
- 2016년 4월
- 2016년 3월
- 2016년 2월
- 2016년 1월
- 2015년 12월
- 2015년 11월
- 2015년 10월
- 2015년 9월
- 2015년 8월
- 2015년 7월
- 2015년 6월
- 2015년 5월
- 2015년 4월
- 2015년 3월
- 2015년 2월
- 2015년 1월
- 2014년 11월
- 2014년 10월
- 2014년 9월
- 2014년 8월
- 2014년 7월
- 2014년 6월
- 2014년 5월
- 2014년 4월
- 2014년 3월
- 2014년 2월
- 2014년 1월
- 2013년 12월
- 2013년 11월
- 2013년 10월
- 2013년 9월
- 2013년 8월
- 2013년 7월
- 2013년 6월
- 2013년 5월
- 2013년 4월
- 2013년 3월
- 2013년 2월
- 2013년 1월
- 2012년 12월
- 2012년 11월
- 2012년 10월
- 2012년 9월
- 2012년 8월
- 2012년 7월
- 2012년 6월
- 2012년 5월
- 2012년 4월
- 2012년 3월
- 2012년 2월
- 2012년 1월
- 2011년 12월
- 2011년 11월
- 2011년 10월
- 2011년 9월
- 2011년 8월
- 2011년 7월
- 2011년 6월
- 2011년 5월
- 2010년 11월
- 2010년 1월
- 2009년 4월
- 2009년 3월
- 2009년 1월
- 2008년 12월
- 2008년 10월
- 2007년 8월
- 2006년 7월
- 2006년 3월
- 2005년 1월
- 2004년 4월