미국/글로벌: +1-949-461-9292
EUROPE: +39-011-3052-794
문의하기

금속 기판의 페인트에 대한 나노 스크래치 및 마모 테스트

나노 스크래치 및 마 테스트

금속 기판에 페인트의 비율

작성자

수잔 카벨로

소개

하드코트가 있든 없든 페인트는 가장 일반적으로 사용되는 코팅 중 하나입니다. 자동차, 벽, 가전제품 등 보호 코팅이 필요하거나 단순히 미적 목적이 있는 거의 모든 곳에서 페인트를 볼 수 있습니다. 기본 기질을 보호하기 위한 페인트에는 종종 페인트에 불이 붙는 것을 방지하거나 페인트의 색이 변하거나 갈라지는 것을 방지하는 화학 물질이 포함되어 있습니다. 미적 목적으로 사용되는 페인트는 종종 다양한 색상으로 제공되지만 반드시 기질을 보호하거나 긴 수명을 위한 것이 아닐 수도 있습니다.

그럼에도 불구하고 모든 페인트는 시간이 지남에 따라 약간의 풍화를 겪습니다. 페인트의 풍화는 종종 제조사가 의도한 것과 다른 특성을 만들 수 있습니다. 더 빨리 부서지거나 열에 의해 벗겨지거나 색이 바래거나 갈라질 수 있습니다. 시간이 지남에 따라 페인트의 특성이 다양하게 변하기 때문에 제조업체는 다양한 페인트를 제공합니다. 페인트는 개별 고객의 다양한 요구 사항을 충족하도록 맞춤 제작됩니다.

품질 관리를 위한 나노 스크래치 테스트의 중요성

페인트 제조업체의 주요 관심사는 제품이 균열을 견딜 수 있는 능력입니다. 페인트가 갈라지기 시작하면 페인트가 도포된 기질을 보호하지 못하기 때문에 고객을 만족시키지 못합니다. 예를 들어, 나뭇가지가 자동차 측면에 부딪혀 페인트가 갈라지기 시작하면 페인트 제조업체는 페인트의 품질 저하로 인해 사업을 잃게 될 것입니다. 페인트 아래의 금속이 노출되면 새로운 노출로 인해 녹이 슬거나 부식되기 시작할 수 있기 때문에 페인트의 품질은 매우 중요합니다.

 

이와 같은 이유는 가정 및 사무용품, 전자제품, 장난감, 연구 도구 등 다양한 분야에 적용됩니다. 페인트를 처음 금속 코팅에 적용했을 때는 균열에 강할 수 있지만, 샘플에 풍화가 발생하면 시간이 지남에 따라 특성이 변할 수 있습니다. 그렇기 때문에 페인트 샘플을 풍화 단계에서 테스트하는 것이 매우 중요합니다. 높은 응력 하에서 균열은 불가피할 수 있지만, 제조업체는 소비자에게 최상의 제품을 제공하기 위해 시간이 지남에 따라 변화가 얼마나 약화될 수 있는지, 영향을 미치는 스크래치가 얼마나 깊어야 하는지 예측해야 합니다.

측정 목표

샘플의 거동 효과를 관찰하기 위해서는 제어되고 모니터링되는 방식으로 스크래치 과정을 시뮬레이션해야 합니다. 이 어플리케이션에서는 나노 스크래치 테스트 모드의 NANOVEA PB1000 기계식 테스터를 사용하여 금속 기판의 약 7 년 된 30-50 μm 두께의 페인트 샘플에 고장을 일으키는 데 필요한 하중을 측정합니다.

2μm 다이아몬드 팁 스타일러스를 0.015mN ~ 20.00mN 범위의 점진적 하중으로 사용하여 코팅을 스크래치했습니다. 스크래치의 실제 깊이 값을 결정하기 위해 0.2mN 하중으로 페인트의 사전 및 사후 스캔을 수행했습니다. 실제 깊이는 테스트 중 샘플의 소성 및 탄성 변형을 분석하는 반면, 사후 스캔은 스크래치의 소성 변형만 분석합니다. 균열로 인해 코팅이 실패한 지점을 실패 지점으로 간주합니다. 테스트 매개변수를 결정하기 위해 ASTMD7187을 기준으로 사용했습니다.

 

풍화된 샘플을 사용했기 때문에 약한 단계에서 페인트 샘플을 테스트하면 실패 지점이 더 낮다는 결론을 내릴 수 있습니다.

 

이 샘플에 대해 다음과 같은 5가지 테스트를 수행했습니다.

정확한 장애 임계 부하를 결정합니다.

나노비아

PB1000

테스트 매개변수

다음 ASTM D7027

거칠기 표준의 표면은 그림 1과 같이 192개의 밝은 선을 생성하는 고속 센서가 장착된 나노베아 ST400을 사용하여 스캔했습니다. 이 192개의 포인트가 동시에 샘플 표면을 스캔하기 때문에 스캔 속도가 크게 향상되었습니다.

로드 유형 프로그레시브
초기 로드 0.015 mN
최종 로드 20mN
로딩 속도 20mN/min
스크래치 길이 1.6mm
스크래치 속도, dx/dt 1.601mm/min
사전 스캔 로드 0.2mN
스캔 후 로드 0.2mN
원뿔형 인덴터 90° 원뿔형 팁 반경 2 µm

들여쓰기 유형

원뿔형

다이아몬드 90° 콘

2 µm 팁 반경

원뿔형 인덴터 다이아몬드 90° 원뿔형 팁 반경 2 µm

결과

이 섹션에서는 스크래치 테스트 중 장애에 대해 수집된 데이터를 제시합니다. 첫 번째 섹션에서는 스크래치에서 관찰된 장애를 설명하고 보고된 임계 부하를 정의합니다. 다음 부분에는 모든 샘플의 임계 하중에 대한 요약 표와 그래픽 표현이 포함되어 있습니다. 마지막 부분에서는 각 스크래치에 대한 임계 하중, 각 불량의 현미경 사진, 테스트 그래프 등 각 샘플에 대한 자세한 결과를 제시합니다.

관찰된 장애 및 임계 부하 정의

중대한 실패:

초기 피해

스크래치 트랙을 따라 손상이 관찰되는 첫 번째 지점입니다.

나노 스크래치 치명적 고장 초기 손상

중대한 실패:

완전한 손상

이 시점에서 스크래치 트랙을 따라 페인트가 깨지고 갈라지는 부분이 더 크게 손상됩니다.

나노 스크래치 치명적 고장 완전 손상

자세한 결과

* 기판 균열 지점에서 측정한 실패 값입니다.

크리티컬 로드
스크래치 초기 피해 [mN] 전체 손상 [µm]
1 14.513 4.932
2 3.895 4.838
3 3.917 4.930
평균 3.988 4.900
STD 개발 0.143 0.054
나노 스크래치 테스트의 전체 스크래치 현미경 사진(1000배 확대).

그림 2: 전체 스크래치 현미경 사진(1000배 확대).

나노 스크래치 테스트의 초기 손상 현미경 사진(1000배 확대)

그림 3: 초기 손상 현미경 사진(1000배 확대).

나노 스크래치 테스트의 전체 손상 현미경 사진(1000배 확대).

그림 4: 전체 손상 현미경 사진(1000배 확대).

선형 나노 스크래치 테스트 마찰력 및 마찰 계수

그림 5: 마찰력 및 마찰 계수.

선형 나노 스크래치 표면 프로파일

그림 6: 표면 프로필.

선형 나노 스크래치 테스트 실제 깊이 및 잔여 깊이

그림 7: 실제 깊이와 잔여 깊이.

결론

나노베아 기계 테스터 에서 나노 스크래치 테스터 모드를 사용하면 페인트 코팅 및 하드 코팅의 많은 실제 실패를 시뮬레이션할 수 있습니다. 제어되고 면밀히 모니터링되는 방식으로 하중을 증가시킴으로써 어떤 하중에서 고장이 발생하는지 파악할 수 있습니다. 이를 통해 스크래치 저항에 대한 정량적 값을 결정할 수 있습니다. 내후성이 없는 상태에서 테스트한 코팅은 약 22mN에서 첫 번째 균열이 발생하는 것으로 알려져 있습니다. 5mN에 가까운 값은 7년의 랩핑으로 인해 페인트의 성능이 저하되었음을 나타냅니다.

원래 프로파일을 보정하면 스크래치 중에 보정된 깊이를 얻고 스크래치 후 잔류 깊이를 측정할 수 있습니다. 이를 통해 하중 증가에 따른 코팅의 소성 및 탄성 거동에 대한 추가 정보를 얻을 수 있습니다. 균열과 변형에 대한 정보는 모두 하드코트 개선에 유용하게 사용될 수 있습니다. 또한 표준 편차가 매우 작아 제조업체가 하드 코트/도료의 품질을 개선하고 풍화 효과를 연구하는 데 도움이 될 수 있는 계측기 기술의 재현성을 보여줍니다.

이제 애플리케이션에 대해 이야기해 보겠습니다.

댓글