미국/글로벌: +1-949-461-9292
EUROPE: +39-011-3052-794
문의하기

카테고리: 프로파일 측정 | 부피 및 면적

 

가공 부품 QC

가공 부품 검사

기계 부품

3D 프로파일 측정을 사용한 CAD 모델 검사

작성자:

Duanjie Li, PhD

개정자

조슬린 에스파르자

프로파일로미터를 이용한 가공 부품 검사

소개

복잡한 형상을 만들 수 있는 정밀 가공에 대한 수요는 다양한 산업 분야에서 증가하고 있습니다. 항공우주, 의료, 자동차부터 기술 기어, 기계, 악기에 이르기까지 지속적인 혁신과 진화로 인해 기대치와 정확도 기준이 새로운 차원으로 높아지고 있습니다. 이에 따라 제품의 최고 품질을 보장하기 위한 엄격한 검사 기술과 기기에 대한 수요가 증가하고 있습니다.

부품 검사를 위한 3D 비접촉식 프로파일 측정의 중요성

공차 및 생산 표준 준수 여부를 확인하려면 가공된 부품의 특성을 CAD 모델과 비교하는 것이 필수적입니다. 부품의 마모로 인해 교체가 필요할 수 있으므로 서비스 기간 동안의 검사도 매우 중요합니다. 필요한 사양에서 벗어난 부분을 적시에 식별하면 비용이 많이 드는 수리, 생산 중단 및 평판 손상을 방지하는 데 도움이 됩니다.

NANOVEA는 터치 프로브 방식과 달리 광학 프로파일러 접촉 없이 3D 표면 스캔을 수행하여 가장 높은 정확도로 복잡한 형상을 빠르고 정밀하며 비파괴적으로 측정할 수 있습니다.

측정 목표

이 애플리케이션에서는 치수, 반경 및 거칠기에 대한 포괄적인 표면 검사를 수행하는 고속 센서가 장착된 3D 비접촉식 프로파일러인 NANOVEA HS2000을 소개합니다. 

40초 이내에 모두 완료됩니다.

나노비아

HS2000

CAD 모델

가공된 부품이 원하는 사양, 공차 및 표면 마감을 충족하는지 확인하려면 부품의 치수와 표면 거칠기를 정밀하게 측정하는 것이 중요합니다. 검사 대상 부품의 3D 모델과 엔지니어링 도면이 아래에 제시되어 있습니다. 

거짓 색상 보기

CAD 모델과 스캔한 가공 부품 표면의 가색 보기를 그림 3에서 비교합니다. 샘플 표면의 높이 변화는 색상의 변화로 확인할 수 있습니다.

그림 2에 표시된 대로 3D 표면 스캔에서 3개의 2D 프로파일을 추출하여 가공된 부품의 치수 공차를 추가로 확인합니다.

프로필 비교 및 결과

프로파일 1 ~ 3은 그림 3 ~ 5에 나와 있습니다. 정량적 공차 검사는 엄격한 제조 표준을 준수하기 위해 측정된 프로파일을 CAD 모델과 비교하여 수행됩니다. 프로파일 1과 프로파일 2는 곡면 가공 부품에서 서로 다른 영역의 반경을 측정합니다. 프로파일 2의 높이 변화는 156mm 길이에 걸쳐 30µm로 원하는 ±125µm 공차 요건을 충족합니다. 

공차 한계값을 설정하면 분석 소프트웨어가 가공된 부품의 합격 여부를 자동으로 판단할 수 있습니다.

프로파일로미터를 이용한 기계 부품 검사

가공된 부품 표면의 거칠기와 균일성은 품질과 기능을 보장하는 데 중요한 역할을 합니다. 그림 6은 표면 조도를 정량화하는 데 사용된 가공된 부품의 상위 스캔에서 추출한 표면 영역입니다. 평균 표면 거칠기(Sa)는 2.31µm로 계산되었습니다.

결론

이 연구에서는 고속 센서가 장착된 나노베아 HS2000 비접촉식 프로파일러가 치수 및 거칠기에 대한 포괄적인 표면 검사를 수행하는 방법을 보여주었습니다. 

고해상도 스캔을 통해 사용자는 가공된 부품의 세부적인 형태와 표면 특징을 측정하고 이를 CAD 모델과 정량적으로 비교할 수 있습니다. 또한 이 기기는 스크래치 및 균열을 포함한 모든 결함을 감지할 수 있습니다. 

고급 윤곽 분석은 가공된 부품이 설정된 사양을 충족하는지 여부를 판단할 뿐만 아니라 마모된 부품의 고장 메커니즘을 평가하는 데도 탁월한 도구로 사용됩니다.

여기에 표시된 데이터는 모든 나노베아 광학 프로파일러에 장착된 고급 분석 소프트웨어로 가능한 계산의 일부에 불과합니다.

 

이제 애플리케이션에 대해 이야기해 보겠습니다.

블록-온-링 마모 테스트

블록 온 링 마모 평가의 중요성

슬라이딩 마모는 하중을 받는 접촉 부위에서 두 소재가 서로 미끄러지면서 발생하는 점진적인 소재 손실입니다. 슬라이딩 마모는 자동차, 항공우주, 석유 및 가스 등 기계와 엔진이 작동하는 다양한 산업에서 필연적으로 발생합니다. 이러한 슬라이딩 동작은 표면에서 심각한 기계적 마모와 재료 이동을 유발하여 생산 효율성, 기계 성능을 저하시키거나 심지어 기계에 손상을 입힐 수 있습니다.
 

 

슬라이딩 마모에는 접착 마모, 2체 마모, 3체 마모 및 피로 마모와 같은 접촉 표면에서 발생하는 복잡한 마모 메커니즘이 포함되는 경우가 많습니다. 재료의 마모 거동은 정상 하중, 속도, 부식 및 윤활과 같은 작업 환경에 의해 크게 영향을 받습니다. 다재다능한 트라이보미터 다양한 실제 작업 조건을 시뮬레이션할 수 있는 것이 마모 평가에 이상적입니다.
Block-on-Ring(ASTM G77) 테스트는 다양한 시뮬레이션 조건에서 재료의 슬라이딩 마모 거동을 평가하는 널리 사용되는 기술로, 특정 마찰 공학 응용 분야에 대해 신뢰할 수 있는 재료 커플 순위를 지정할 수 있습니다.
 
 

 

측정 목표

이 응용 분야에서 나노베아 기계식 테스터는 스테인리스 스틸 SS304 및 알루미늄 Al6061 금속 합금 시료의 YS 및 UTS를 측정합니다. 샘플은 나노베아 압입 방법의 신뢰성을 보여주는 일반적으로 인정되는 YS 및 UTS 값을 위해 선택되었습니다.

 

S-10 링에 있는 H-30 블록의 슬라이딩 마모 거동은 Block-on-Ring 모듈을 사용하는 Nanovea 마찰계로 평가되었습니다. H-30 블록은 경도가 30HRC인 01 공구강으로 제작되는 반면, S-10 링은 표면 경도가 58~63HRC이고 링 직경이 ~34.98mm인 강철 유형 4620입니다. Block-on-Ring 테스트는 마모 거동에 대한 영향을 조사하기 위해 건조하고 윤활된 환경에서 수행되었습니다. USP 중질 미네랄 오일을 사용하여 윤활 테스트를 수행했습니다. 마모 트랙은 Nanovea를 사용하여 검사되었습니다. 3D 비접촉 프로파일로미터. 시험 변수는 표 1에 요약되어 있습니다. 마모율(K)은 K=V/(F×s) 공식을 사용하여 평가되었으며, 여기서 V는 마모량, F는 일반 하중, s는 슬라이딩 거리입니다.

 

 

결과 및 토론

그림 2는 건조하고 윤활된 환경에서 Block-on-Ring 테스트의 마찰 계수(COF)를 비교합니다. 블록은 윤활 환경보다 건조한 환경에서 훨씬 더 많은 마찰을 갖습니다. COF
첫 번째 50회전에서 런인 기간 동안 변동하고 나머지 200회전 마모 테스트에서는 ~0.8의 일정한 COF에 도달합니다. 이에 비해 USP 중질광유 윤활에서 수행된 Block-on-Ring 테스트는 500,000회전 마모 테스트 전체에서 0.09의 일정하고 낮은 COF를 나타냅니다. 윤활제는 표면 사이의 COF를 ~90배까지 크게 줄입니다.

 

그림 3과 4는 건식 및 윤활 마모 테스트 후 블록의 마모 흉터에 대한 광학 이미지와 단면 2D 프로파일을 보여줍니다. 마모 트랙 부피와 마모율은 표 2에 나와 있습니다. 200회전 동안 72rpm의 낮은 회전 속도에서 건식 마모 테스트를 거친 스틸 블록은 9.45mm˙의 큰 마모 흉터 부피를 나타냅니다. 이에 비해 광유 윤활유를 사용하여 500,000회전 동안 197rpm의 높은 회전 속도로 마모 테스트를 수행한 경우 마모 트랙 부피는 0.03mm˙로 훨씬 작아집니다.

 


그림 3의 이미지는 윤활 마모 테스트의 경미한 마모와 비교하여 건조한 조건에서 테스트하는 동안 심각한 마모가 발생하는 것을 보여줍니다. 건식 마모 테스트 중에 발생하는 높은 열과 강한 진동은 금속 파편의 산화를 촉진하여 심각한 삼체 마모를 유발합니다. 윤활 테스트에서는 미네랄 오일이 마찰을 줄이고 접촉면을 냉각시킬 뿐만 아니라 마모 중에 생성된 연마 파편을 멀리 이동시킵니다. 그 결과 마모율이 최대 8×10배까지 현저히 감소합니다. 이처럼 서로 다른 환경에서 내마모성에 큰 차이를 보이는 것은 실제 서비스 조건에서 적절한 슬라이딩 마모 시뮬레이션이 중요하다는 것을 보여줍니다.

 


테스트 조건에 작은 변화가 생기면 마모 거동이 크게 달라질 수 있습니다. 나노베아 트라이보미터의 다양한 기능 덕분에 고온, 윤활 및 마찰 부식 조건에서 마모를 측정할 수 있습니다. 고급 모터에 의한 정확한 속도 및 위치 제어를 통해 0.001 ~ 5000rpm 범위의 속도에서 마모 테스트를 수행할 수 있으므로 다양한 마찰 조건에서 마모를 조사하는 연구/테스트 실험실에 이상적인 도구입니다.

 

샘플의 표면 상태는 나노비아의 비접촉식 광학 프로로미터로 검사했습니다. 그림 5는 마모 테스트 후 링의 표면 형태를 보여줍니다. 슬라이딩 마모 과정에서 생성된 표면 형태와 거칠기를 더 잘 보여주기 위해 실린더 형태를 제거했습니다. 200 회전의 건식 마모 테스트 동안 3체 마모 공정으로 인해 상당한 표면 거칠기가 발생했습니다. 건식 마모 테스트 후 블록과 링은 각각 14.1 및 18.1 µm의 거칠기 Ra를 보였는데, 이는 더 높은 속도에서 장기간 500,000회전 윤활 마모 테스트의 5.7 및 9.1 µm와 비교했을 때 매우 높은 수치입니다. 이 테스트는 피스톤 링-실린더 접촉부의 적절한 윤활이 얼마나 중요한지 보여줍니다. 마모가 심하면 윤활을 하지 않아도 접촉면이 빠르게 손상되어 서비스 품질이 돌이킬 수 없을 정도로 저하되고 엔진이 파손될 수도 있습니다.

 

 

결론

본 연구에서는 ASTM G77 표준에 따라 Block-on-Ring 모듈을 사용하여 강철 금속 커플의 슬라이딩 마모 거동을 평가하기 위해 Nanovea의 마찰계가 어떻게 사용되는지 보여줍니다. 윤활제는 재료 쌍의 마모 특성에 중요한 역할을 합니다. 미네랄 오일은 H-30 블록의 마모율을 ~8×10ˆ, COF를 ~90배 감소시킵니다. Nanovea 마찰계는 다양한 기능을 갖추고 있어 다양한 윤활, 고온 및 마찰 부식 조건에서 마모 거동을 측정하는 데 이상적인 도구입니다.

Nanovea의 트라이보미터(Tribometer)는 하나의 사전 통합 시스템에서 선택적으로 사용할 수 있는 고온 마모, 윤활 및 마찰 부식 모듈과 함께 ISO 및 ASTM 규격 회전 및 선형 모드를 사용하여 정확하고 반복 가능한 마모 및 마찰 테스트를 제공합니다. Nanovea의 탁월한 제품군은 얇거나 두꺼운 코팅, 부드럽거나 단단한 코팅, 필름 및 기판의 마찰 특성 전체 범위를 결정하는 데 이상적인 솔루션입니다.

이제 애플리케이션에 대해 이야기해 보겠습니다.

동적 하중 마찰학

동적 하중 마찰학

소개

마모는 거의 모든 산업 부문에서 발생하며 GDP의 약 0.75%에 달하는 비용을 부과합니다1. 마찰학 연구는 생산 효율성, 애플리케이션 성능을 개선하고 재료, 에너지 및 환경을 보존하는 데 필수적입니다. 진동과 진동은 광범위한 마찰 응용 분야에서 필연적으로 발생합니다. 과도한 외부 진동은 마모 과정을 가속화하고 서비스 성능을 저하시켜 기계 부품에 치명적인 고장을 일으킵니다.

기존의 불감하중 트라이보미터는 질량 추에 의해 정상 하중을 적용합니다. 이러한 하중 기법은 하중 옵션을 일정한 하중으로 제한할 뿐만 아니라 높은 하중과 속도에서 제어되지 않은 강렬한 진동을 발생시켜 마모 거동 평가가 제한적이고 일관되지 않습니다. 제어 진동이 재료의 마모 거동에 미치는 영향에 대한 신뢰할 수 있는 평가는 다양한 산업 응용 분야의 R&D 및 QC에 바람직합니다.

나노베아의 획기적인 고부하 트라이보미터 동적 하중 제어 시스템을 갖춘 최대 하중 용량은 2000N입니다. 고급 공압 압축 공기 로딩 시스템을 통해 사용자는 마모 과정에서 발생하는 원치 않는 진동을 감쇠시키는 이점을 통해 높은 일반 하중 하에서 재료의 마찰학적 거동을 평가할 수 있습니다. 따라서 기존 설계에 사용된 완충 스프링이 필요 없이 하중을 직접 측정할 수 있습니다. 병렬 전자석 진동 로딩 모듈은 최대 20N의 원하는 진폭과 최대 150Hz의 주파수를 잘 제어된 진동에 적용합니다.

마찰은 상부 홀더에 가해지는 측면 힘에서 직접 높은 정확도로 측정됩니다. 변위는 현장에서 모니터링되어 테스트 샘플의 마모 거동 변화에 대한 통찰력을 제공합니다. 제어된 진동 하중 하의 마모 테스트는 부식, 고온, 습도 및 윤활 환경에서 수행되어 마찰 공학 응용 분야의 실제 작업 조건을 시뮬레이션할 수도 있습니다. 통합된 고속 비접촉 프로파일로미터 몇 초 안에 마모 트랙 형태와 마모량을 자동으로 측정합니다.

측정 목표

이 연구에서는 제어된 진동 하중 조건에서 다양한 코팅 및 금속 시료의 마찰 거동을 연구하는 데 있어 나노베아 T2000 동적 하중 트라이보미터의 성능을 소개합니다.

 

테스트 절차

300 µm 두께의 내마모성 코팅의 마찰 계수, COF 및 내마모성과 같은 마찰 거동을 평가하고 나노베아 T2000 트라이보미터와 ASTM G992에 따른 핀 온 디스크 설정을 사용하는 기존 무부하 트라이보미터를 비교했습니다.

제어된 진동 하에서 6mm Al²O₃ 볼에 대해 별도의 Cu 및 TiN 코팅 샘플을 Nanovea T2000 마찰계의 동적 부하 마찰학 모드로 평가했습니다.

테스트 매개변수는 표 1에 요약되어 있습니다.

라인 센서가 장착된 통합 3D 프로파일로미터는 테스트 후 마모 트랙을 자동으로 스캔하여 몇 초 만에 가장 정확한 마모량 측정을 제공합니다.

결과 및 토론

 

공압식 로딩 시스템과 데드로드 시스템 비교

 

나노베아 T2000 트라이보미터를 사용한 내마모성 코팅의 마찰 거동을 기존의 사하중(DL) 트라이보미터와 비교합니다. 코팅의 COF 변화는 그림 2에 나와 있습니다. 마모 테스트 동안 코팅이 ~0.6의 비슷한 COF 값을 나타내는 것을 관찰했습니다. 그러나 그림 3의 마모 트랙의 여러 위치에서 20개의 단면 프로파일을 보면 코팅이 사하중 시스템 하에서 훨씬 더 심한 마모를 경험했음을 알 수 있습니다.

높은 하중과 속도에서 데드 로드 시스템의 마모 과정에서 강렬한 진동이 발생했습니다. 높은 슬라이딩 속도와 결합된 접촉면에 집중된 엄청난 압력은 상당한 무게와 구조물 진동을 발생시켜 마모를 가속화합니다. 기존의 부하시 트라이보미터는 질량 추를 사용하여 하중을 가합니다. 이 방법은 경미한 마모 조건에서 낮은 접촉 하중에서는 신뢰할 수 있지만, 더 높은 하중과 속도의 공격적인 마모 조건에서는 상당한 진동으로 인해 무게추가 반복적으로 튕겨져 고르지 않은 마모 트랙이 발생하여 신뢰할 수 없는 마찰 평가를 초래합니다. 계산된 마모율은 8.0±2.4 x 10-4 mm3/N m로 높은 마모율과 큰 표준 편차를 보여줍니다.

나노베아 T2000 트라이보미터는 동적 제어 하중 시스템으로 설계되어 진동을 감쇠시킵니다. 이 시스템은 압축 공기로 정상 하중을 가하여 마모 과정에서 발생하는 원치 않는 진동을 최소화합니다. 또한 액티브 폐쇄 루프 하중 제어를 통해 마모 테스트 내내 일정한 하중이 적용되고 스타일러스가 마모 트랙의 깊이 변화를 따라갑니다. 그림 3a와 같이 훨씬 더 일관된 마모 트랙 프로파일이 측정되어 3.4±0.5 x 10-4 mm3/N m의 낮은 마모율을 기록합니다.

그림 4에 표시된 마모 트랙 분석은 나노베아 T2000 트라이보미터의 공압 압축 공기 로딩 시스템으로 수행된 마모 테스트가 기존의 무부하 트라이보미터에 비해 더 부드럽고 일관된 마모 트랙을 생성한다는 것을 확인시켜 줍니다. 또한 나노베아 T2000 트라이보미터는 마모 프로세스 동안 스타일러스 변위를 측정하여 현장에서의 마모 진행 상황에 대한 추가 통찰력을 제공합니다.

 

 

Cu 샘플의 마모에 따른 진동 제어

나노베아 T2000 트라이보미터의 병렬 진동 하중 전자석 모듈을 통해 사용자는 제어된 진폭 및 주파수 진동이 재료의 마모 거동에 미치는 영향을 조사할 수 있습니다. 그림 6과 같이 Cu 샘플의 COF는 현장에서 기록됩니다. Cu 샘플은 첫 번째 330회전 측정 동안 ~0.3의 일정한 COF를 나타내며, 이는 계면에서 안정적인 접촉이 형성되고 비교적 매끄러운 마모 트랙이 형성되었음을 나타냅니다. 마모 테스트가 계속됨에 따라 COF의 변화는 마모 메커니즘의 변화를 나타냅니다. 이에 비해 50N에서 5N 진폭 제어 진동 하에서의 마모 테스트는 다른 마모 거동을 보여줍니다. 마모 공정이 시작될 때 COF가 즉시 증가하고 마모 테스트 전반에 걸쳐 상당한 변화를 보입니다. 이러한 COF의 거동은 정상 하중에서 부과된 진동이 접점에서의 불안정한 슬라이딩 상태에 영향을 미친다는 것을 나타냅니다.

그림 7은 통합 비접촉식 광학 프로파일로미터로 측정한 마모 트랙 형태를 비교한 것입니다. 진동 진폭이 5N으로 제어된 Cu 샘플은 진동이 부과되지 않은 5.03 x 108 µm3에 비해 1.35 x 109 µm3의 부피로 훨씬 더 큰 마모 트랙을 나타내는 것을 관찰할 수 있습니다. 제어 진동은 마모 속도를 약 2.7배까지 크게 가속화하여 마모 거동에 대한 진동이 중요한 영향을 미친다는 것을 보여줍니다.

 

TiN 코팅의 마모에 따른 진동 제어

TiN 코팅 샘플의 COF 및 마모 트랙은 그림 8에 나와 있습니다. TiN 코팅은 테스트 중 COF의 변화에서 알 수 있듯이 진동 하에서 상당히 다른 마모 거동을 나타냅니다. TiN 코팅은 마모 테스트 시작 시 런인 기간 이후에도 ~0.3의 일정한 COF를 보이는데, 이는 TiN 코팅과 Al₂O₃ 볼 사이의 계면에서 안정적인 슬라이딩 접촉이 이루어지기 때문입니다. 그러나 TiN 코팅이 실패하기 시작하면 Al₂O₃ 볼이 코팅을 관통하여 그 아래의 새로운 강철 기판으로 미끄러집니다. 동시에 마모 트랙에 상당한 양의 단단한 TiN 코팅 파편이 생성되어 안정적인 2체 슬라이딩 마모가 3체 마모 마모로 전환됩니다. 이러한 재료 커플 특성의 변화는 COF의 진화에서 더 많은 변화를 초래합니다. 5N 및 10N 진동이 가해지면 TiN 코팅 파손이 ~400 회전에서 100 회전 이하로 가속화됩니다. 제어 진동 하에서 마모 테스트 후 TiN 코팅 샘플에서 더 큰 마모 트랙이 나타나는 것은 이러한 COF의 변화와 일치합니다.

결론

나노베아 T2000 트라이보미터의 첨단 공압식 로딩 시스템은 기존의 데드 로드 시스템에 비해 자연적으로 빠른 진동 댐퍼라는 본질적인 이점을 가지고 있습니다. 공압 시스템의 이러한 기술적 장점은 서보 모터와 스프링을 조합하여 하중을 가하는 부하 제어 시스템과 비교할 때 사실입니다. 이 기술은 이 연구에서 입증된 바와 같이 높은 부하에서 안정적이고 더 잘 제어된 마모 평가를 보장합니다. 또한 능동 폐쇄 루프 부하 시스템은 마모 테스트 중에 정상 부하를 원하는 값으로 변경하여 브레이크 시스템에서 볼 수 있는 실제 적용을 시뮬레이션할 수 있습니다.

테스트 중 제어되지 않은 진동 조건의 영향을 받지 않고 나노베아 T2000 동적-하중 트라이보미터를 사용하면 다양한 제어 진동 조건에서 재료의 마찰 거동을 정량적으로 평가할 수 있습니다. 진동은 금속 및 세라믹 코팅 샘플의 마모 거동에 중요한 역할을 합니다.

병렬 전자석 진동 하중 모듈은 설정된 진폭과 주파수에서 정밀하게 제어된 진동을 제공하므로 환경 진동이 중요한 요소인 실제 조건에서 마모 과정을 시뮬레이션할 수 있습니다. 마모 중에 진동이 가해진 경우 Cu와 TiN 코팅 샘플 모두 마모 속도가 상당히 증가했습니다. 마찰 계수의 변화와 현장에서 측정된 스타일러스 변위는 마찰 응용 분야에서 재료의 성능을 나타내는 중요한 지표입니다. 통합된 3D 비접촉식 프로파일로미터는 마모량을 정밀하게 측정하고 마모 트랙의 세부적인 형태를 몇 초 만에 분석할 수 있는 도구를 제공하여 마모 메커니즘에 대한 근본적인 이해에 더 많은 통찰력을 제공합니다.

T2000에는 20비트 내부 속도와 16비트 외부 위치 인코더를 갖춘 자체 튜닝된 고품질, 고토크 모터가 장착되어 있습니다. 이를 통해 트라이보미터는 0.01~5000rpm의 탁월한 회전 속도 범위를 제공할 수 있으며, 단계적으로 점프하거나 연속적으로 변경할 수 있습니다. 하단에 위치한 토크 센서를 사용하는 시스템과 달리 나노베아 트라이보미터는 상단에 위치한 고정밀 로드셀을 사용하여 마찰력을 정확하고 개별적으로 측정합니다.

나노베아 트라이보미터는 ISO 및 ASTM을 준수하는 회전 및 선형 모드(4볼, 스러스트 와셔 및 블록 온 링 테스트 포함)를 사용하여 정밀하고 반복 가능한 마모 및 마찰 테스트를 제공하며, 고온 마모, 윤활 및 트리보 부식 모듈을 하나의 사전 통합된 시스템에서 옵션으로 사용할 수 있습니다. 나노베아 T2000의 탁월한 제품군은 얇거나 두꺼운, 연질 또는 경질 코팅, 필름 및 기판의 모든 범위의 마찰 특성을 측정하는 데 이상적인 솔루션입니다.

이제 애플리케이션에 대해 이야기해 보겠습니다.

폴리머의 마찰학

소개

폴리머는 다양한 용도로 광범위하게 사용되어 왔으며 일상 생활에서 없어서는 안 될 필수품이 되었습니다. 호박, 실크, 천연 고무와 같은 천연 폴리머는 인류 역사에서 필수적인 역할을 해왔습니다. 합성 폴리머의 제조 공정은 인성, 점탄성, 자체 윤활성 등 고유한 물리적 특성을 달성하기 위해 최적화될 수 있습니다.

폴리머의 마모와 마찰의 중요성

폴리머는 일반적으로 타이어, 베어링 및 컨베이어 벨트와 같은 마찰 응용 분야에 사용됩니다.
폴리머의 기계적 특성, 접촉 조건, 마모 과정에서 형성되는 이물질 또는 전사막의 특성에 따라 다양한 마모 메커니즘이 발생합니다. 폴리머가 서비스 조건에서 충분한 내마모성을 갖도록 하려면 신뢰할 수 있고 정량화할 수 있는 마찰 평가가 필요합니다. 마찰 평가를 통해 다양한 폴리머의 마모 거동을 제어 및 모니터링 방식으로 정량적으로 비교하여 대상 애플리케이션에 적합한 소재 후보를 선택할 수 있습니다.

나노베아 트라이보미터는 ISO 및 ASTM을 준수하는 회전 및 선형 모드를 사용하여 반복 가능한 마모 및 마찰 테스트를 제공하며, 사전 통합된 하나의 시스템에서 고온 마모 및 윤활 모듈을 옵션으로 사용할 수 있습니다. 이 독보적인 제품군을 통해 사용자는 집중 응력, 마모, 고온 등 폴리머의 다양한 작업 환경을 시뮬레이션할 수 있습니다.

측정 목표

이번 연구에서 우리는 Nanovea가 트라이보미터 잘 제어되고 정량적인 방식으로 다양한 폴리머의 마찰 및 내마모성을 비교하는 데 이상적인 도구입니다.

테스트 절차

다양한 일반 폴리머의 마찰 계수(COF)와 내마모성은 Nanovea Tribometer로 평가되었습니다. Al2O3 볼은 카운터 재료(핀, 고정 샘플)로 사용되었습니다. 폴리머의 마모 트랙(동적 회전 샘플)은 다음을 사용하여 측정되었습니다. 비접촉 3D 프로파일로미터 테스트가 끝난 후 광학 현미경. 옵션으로 마모 테스트 중에 핀이 동적 샘플을 관통하는 깊이를 측정하기 위해 비접촉 내시경 센서를 사용할 수 있다는 점에 유의해야 합니다. 시험 변수는 표 1에 요약되어 있습니다. 마모율 K는 K=Vl(Fxs) 공식을 사용하여 평가되었으며, 여기서 V는 마모량, F는 일반 하중, s는 슬라이딩 거리입니다.

이 연구에서는 Al2O3 볼을 카운터 재료로 사용했습니다. 실제 적용 조건에서 두 시편의 성능을 보다 면밀히 시뮬레이션하기 위해 다른 고체 재료로 대체할 수 있습니다.

결과 및 토론

마모율은 재료의 서비스 수명을 결정하는 데 중요한 요소이며 마찰은 마찰 응용 분야에서 중요한 역할을 합니다. 그림 2는 마모 테스트 중 Al2O3 볼에 대한 다양한 폴리머의 COF 변화를 비교한 것입니다. COF는 고장이 발생하고 마모 공정이 새로운 단계로 진입하는 시점을 나타내는 지표로 작용합니다. 테스트된 폴리머 중 HDPE는 마모 테스트 내내 ~0.15의 가장 낮은 일정한 COF를 유지했습니다. 부드러운 COF는 안정적인 트라이보 접촉이 형성되었음을 의미합니다.

그림 3과 그림 4는 광학 현미경으로 테스트를 측정한 후 폴리머 샘플의 마모 트랙을 비교한 것입니다. 현장 비접촉식 3D 프로파일로미터는 폴리머 샘플의 마모량을 정밀하게 측정하여 각각 0.0029, 0.0020 및 0.0032m3/N m의 마모율을 정확하게 계산할 수 있습니다. 이에 비해 CPVC 샘플은 0.1121m3/N m의 가장 높은 마모율을 보였으며, CPVC의 마모 트랙에는 깊은 평행 마모 흉터가 존재합니다.

결론

폴리머의 내마모성은 서비스 성능에 중요한 역할을 합니다. 이 연구에서는 나노베아 트라이보미터가 다양한 폴리머의 마찰 계수와 마모율을 평가하는 것을 보여주었습니다.
잘 제어되고 정량적인 방식으로. HDPE는 테스트한 폴리머 중 가장 낮은 0.15의 COF를 보였습니다. HDPE, 나일론 66 및 폴리프로필렌 샘플은 각각 0.0029, 0.0020 및 0.0032 m3/N m의 낮은 마모율을 보였습니다. 낮은 마찰과 뛰어난 내마모성이 결합된 HDPE는 폴리머 마찰 응용 분야에 적합한 후보입니다.

현장 비접촉식 3D 프로파일로미터는 정밀한 마모량 측정이 가능하며 마모 트랙의 세부적인 형태를 분석할 수 있는 도구를 제공하여 마모 메커니즘에 대한 근본적인 이해에 대한 통찰력을 제공합니다.

이제 애플리케이션에 대해 이야기해 보겠습니다.

3D 프로파일 측정을 통한 허니콤 패널 표면 마감

소개


허니콤 패널 표면의 거칠기, 다공성 및 질감은 최종 패널 설계를 위해 정량화해야 하는 중요한 요소입니다. 이러한 표면 품질은 패널 표면의 미적 및 기능적 특성과 직접적인 상관관계가 있습니다. 표면 질감과 다공성을 더 잘 이해하면 패널 표면 처리 및 제조 가능성을 최적화하는 데 도움이 될 수 있습니다. 허니콤 패널의 정량적이고 정밀하며 신뢰할 수 있는 표면 측정은 애플리케이션 및 도장 요구 사항에 대한 표면 매개변수를 제어하는 데 필요합니다. 나노비아 3D 비접촉 센서는 이러한 패널 표면을 정밀하게 측정할 수 있는 고유한 색채 공초점 기술을 활용합니다.



측정 목표


본 연구에서는 고속 라인 센서가 장착된 Nanovea HS2000 플랫폼을 사용하여 표면 마감이 다른 두 개의 허니컴 패널을 측정하고 비교했습니다. 나노베아를 선보입니다. 비접촉 프로파일로미터빠르고 정확한 3D 프로파일링 측정과 표면 마감에 대한 포괄적이고 심층적인 분석을 제공하는 의 능력입니다.



결과 및 토론

다양한 표면 마감을 가진 두 개의 허니콤 패널 샘플, 즉 샘플 1과 샘플 2의 표면을 측정했습니다. 샘플 1과 샘플 2 표면의 가색 및 3D 뷰는 각각 그림 3과 그림 4에 나와 있습니다. 거칠기 및 평탄도 값은 고급 분석 소프트웨어로 계산되었으며 표 1에서 비교됩니다. 샘플 2는 샘플 1에 비해 더 다공성 표면을 나타냅니다. 그 결과, 샘플 2의 거칠기 Sa는 14.7µm로 샘플 1의 Sa 값인 4.27µm에 비해 더 높습니다.

벌집 패널 표면의 2D 프로파일을 그림 5에서 비교하여 샘플 표면의 여러 위치에서 높이 변화를 시각적으로 비교할 수 있습니다. 샘플 1은 가장 높은 피크와 가장 낮은 골짜기 위치 사이에 약 25µm의 높이 변화가 있음을 관찰할 수 있습니다. 반면에 샘플 2는 2D 프로파일 전체에 걸쳐 여러 개의 깊은 기공을 보여줍니다. 고급 분석 소프트웨어는 그림 4.b 샘플 2의 표에 표시된 것처럼 상대적으로 깊은 6개의 기공을 자동으로 찾아 깊이를 측정할 수 있는 기능을 갖추고 있습니다. 6개의 기공 중 가장 깊은 기공은 최대 깊이가 거의 90µm에 달합니다(4단계).

샘플 2의 기공 크기와 분포를 추가로 조사하기 위해 기공 평가를 수행하고 다음 섹션에서 논의했습니다. 슬라이스 보기는 그림 5에 표시되어 있으며 결과는 표 2에 요약되어 있습니다. 그림 5에서 파란색으로 표시된 기공이 샘플 표면에 비교적 균일하게 분포되어 있는 것을 관찰할 수 있습니다. 기공의 투영 면적은 전체 샘플 표면의 18.9%를 차지합니다. 전체 기공의 mm²당 부피는 ~0.06 mm³입니다. 기공의 평균 깊이는 42.2 µm이고 최대 깊이는 108.1 µm입니다.

결론



이 애플리케이션에서는 고속 라인 센서가 장착된 나노베아 HS2000 플랫폼이 허니콤 패널 샘플의 표면 마감을 빠르고 정확하게 분석하고 비교하는 데 이상적인 도구임을 보여주었습니다. 고급 분석 소프트웨어와 결합된 고해상도 프로파일 측정 스캔을 통해 허니콤 패널 샘플의 표면 마감을 종합적이고 정량적으로 평가할 수 있습니다.

여기에 표시된 데이터는 분석 소프트웨어에서 사용할 수 있는 계산의 일부에 불과합니다. 나노베아 프로파일로미터는 반도체, 마이크로전자, 태양광, 광섬유, 자동차, 항공우주, 야금, 기계 가공, 코팅, 제약, 생의학, 환경 및 기타 여러 산업 분야의 광범위한 응용 분야에서 거의 모든 표면을 측정합니다.

이제 애플리케이션에 대해 이야기해 보겠습니다.

스크래치 테스트를 사용한 코팅 실패 이해

소개:

재료의 표면 공학은 장식적인 외관부터 마모, 부식 및 기타 형태의 공격으로부터 기판을 보호하는 것까지 다양한 기능적 응용 분야에서 중요한 역할을 합니다. 코팅의 품질과 서비스 수명을 결정하는 중요하고 가장 중요한 요소는 응집력과 접착력입니다.

읽으려면 여기를 클릭하세요!

회전 마모와 선형 마모 및 COF? (나노베아 트라이보미터를 사용한 종합 연구)

마모는 반대쪽 표면의 기계적 작용으로 인해 표면의 재료가 제거되고 변형되는 과정입니다. 단방향 슬라이딩, 롤링, 속도, 온도 등 다양한 요인의 영향을 받습니다. 마모, 마찰학에 대한 연구는 물리학, 화학에서 기계 공학, 재료 과학에 이르기까지 다양한 분야에 걸쳐 있습니다. 마모의 복잡한 특성으로 인해 접착 마모, 연마 마모, 표면 피로, 프레팅 마모 및 침식 마모와 같은 특정 마모 메커니즘 또는 프로세스에 대한 별도의 연구가 필요합니다. 그러나 "산업용 마모"는 일반적으로 시너지 효과로 발생하는 여러 마모 메커니즘을 포함합니다.

선형 왕복 마모 테스트와 회전(Pin on Disk) 마모 테스트는 재료의 슬라이딩 마모 거동을 측정하기 위해 널리 사용되는 두 가지 ASTM 준수 설정입니다. 마모 테스트 방법의 마모율 값은 재료 조합의 상대적 순위를 예측하는 데 자주 사용되므로 다양한 테스트 설정을 사용하여 측정된 마모율의 반복성을 확인하는 것이 매우 중요합니다. 이를 통해 사용자는 문헌에 보고된 마모율 값을 신중하게 고려할 수 있으며, 이는 재료의 마찰 특성을 이해하는 데 중요합니다.

자세히 읽어보세요!

굴 껍데기의 고속 특성 분석

복잡한 형상을 가진 대형 샘플은 샘플 준비, 크기, 날카로운 각도 및 곡률로 인해 작업하기가 어려울 수 있습니다. 이 연구에서는 굴 껍데기를 스캔하여 복잡한 형상의 대형 생물학적 샘플을 스캔할 수 있는 나노베아 HS2000 라인 센서의 기능을 입증할 것입니다. 이 연구에서는 생물학적 샘플이 사용되었지만 동일한 개념을 다른 샘플에도 적용할 수 있습니다.

자세히 보기

 

 

 

 

 

 

 

 

 

 

목재 바닥재의 표면 마감 검사

 

프로파일링 목재 마감의 중요성

다양한 산업에서 목재 마감의 목적은 화학적, 기계적 또는 생물학적 등 다양한 유형의 손상으로부터 목재 표면을 보호하거나 특정 시각적 미학을 제공하는 것입니다. 제조업체와 구매자 모두에게 목재 마감재의 표면 특성을 정량화하는 것은 목재 마감 공정의 품질 관리 또는 최적화에 매우 중요합니다. 이 애플리케이션에서는 나노비아 3D 비접촉 프로파일로미터를 사용하여 정량화할 수 있는 다양한 표면 특징을 살펴봅니다.


목재 표면에 존재하는 거칠기와 질감의 양을 정량화하는 것은 목재가 용도의 요구 사항을 충족할 수 있는지 확인하기 위해 필수적으로 알아야 할 사항입니다. 정량화 가능하고 반복 가능하며 신뢰할 수 있는 표면 검사 방법을 기반으로 마감 공정을 개선하거나 목재 표면의 품질을 확인하면 제조업체는 통제된 표면 처리를 만들 수 있고 구매자는 자신의 요구에 맞는 목재 재료를 검사하고 선택할 수 있습니다.



측정 목표

본 연구에서는 고속 Nanovea HS2000을 프로파일 미터 비접촉식 프로파일링 라인 센서가 장착된 세 가지 바닥재 샘플(Antique Birch Hardwood, Courtship Grey Oak 및 Santos Mahogany 바닥재)의 표면 마감을 측정하고 비교하는 데 사용되었습니다. 세 가지 유형의 표면적을 측정하고 스캔에 대한 포괄적인 심층 분석을 수행할 때 속도와 정밀도를 모두 제공하는 Nanovea 비접촉 프로파일로미터의 기능을 소개합니다.





테스트 절차 및 방법




결과 및 토론

샘플 설명: 코트십 그레이 오크 및 산토스 마호가니 바닥재는 라미네이트 바닥재 유형입니다. 코트십 그레이 오크는 저광택의 질감이 있는 슬레이트 그레이 샘플로 EIR 마감 처리되었습니다. 산토스 마호가니는 고광택의 짙은 버건디 샘플로 프리마감 처리되었습니다. 앤틱 버치 원목은 7겹 산화알루미늄 마감으로 일상적인 마모와 손상을 방지합니다.

 





앤티크 자작나무 원목






구애 그레이 오크






산토스 마호가니




토론

모든 샘플의 Sa 값 사이에는 분명한 차이가 있습니다. 가장 매끄러운 것은 1.716 µm의 Sa를 기록한 앤틱 버치 하드우드였으며, 그다음은 2.388 µm의 산토스 마호가니였고, 11.17 µm의 코트십 그레이 오크의 경우 그보다 훨씬 더 높았습니다. P값과 R값은 표면을 따라 특정 프로파일의 거칠기를 평가하는 데 사용할 수 있는 일반적인 거칠기 값이기도 합니다. 코트십 그레이 오크는 나무의 세포와 섬유 방향을 따라 균열과 같은 특징이 가득한 거친 질감을 지니고 있습니다. 표면의 질감 때문에 코트십 그레이 오크 샘플에 대한 추가 분석이 수행되었습니다. 코트십 그레이 오크 샘플에서는 슬라이스를 사용하여 평평한 균일한 표면에서 균열의 깊이와 부피를 분리하고 계산했습니다.



결론




이 애플리케이션에서는 나노베아 HS2000 고속 프로파일로미터를 사용하여 목재 샘플의 표면 마감을 효과적이고 효율적으로 검사하는 방법을 보여주었습니다. 표면 마감 측정은 제조 공정을 개선하거나 특정 용도에 가장 적합한 제품을 선택하는 방법을 이해하는 데 있어 원목 바닥재 제조업체와 소비자 모두에게 중요할 수 있습니다.

이제 애플리케이션에 대해 이야기해 보겠습니다.

나노베아 트라이보미터를 이용한 목재 마모 테스트

목재 마감 마모 및 COF 비교의 중요성

목재는 수천 년 동안 주택, 가구, 바닥재의 건축 자재로 사용되어 왔습니다. 자연스러운 아름다움과 내구성이 결합되어 있어 바닥재로 이상적인 제품입니다. 원목마루는 카펫과 달리 색상이 오랫동안 유지되고 청소 및 관리가 용이합니다. 그러나 대부분의 나무마루는 천연소재이기 때문에 긁힘, 긁힘 등 다양한 손상으로부터 목재를 보호하기 위해 표면마감 처리가 필요합니다. 시간이 지남에 따라 치핑. 이번 연구에서는 Nanovea 트라이보미터 세 가지 목재 마감재의 비교 성능을 더 잘 이해하기 위해 마모율과 마찰 계수(COF)를 측정하는 데 사용되었습니다.

바닥재로 사용되는 목재 종의 서비스 거동은 종종 내마모성과 관련이 있습니다. 목재 종류에 따른 개별 세포 및 섬유 구조의 변화는 각기 다른 기계적 및 마찰학적 거동에 영향을 미칩니다. 바닥재로 사용되는 목재의 실제 서비스 테스트는 비용이 많이 들고, 복제하기 어려우며, 장기간의 테스트 시간이 필요합니다. 따라서 신뢰할 수 있고 재현 가능하며 간단한 마모 테스트를 개발하는 것이 중요합니다.

측정 목표

이 연구에서는 세 가지 유형의 목재의 마모 거동을 시뮬레이션하고 비교하여 제어 및 모니터링 방식으로 목재의 마찰 특성을 평가하는 데 있어 나노베아 트라이보미터의 기능을 보여주었습니다.

토론

샘플 설명: 앤틱 자작나무 원목은 7겹 산화알루미늄 마감으로 일상적인 마모와 손상을 방지합니다. 코트십 그레이 오크 및 산토스 마호가니는 모두 표면 마감과 광택이 다양한 라미네이트 바닥재 유형입니다. 코트십 그레이 오크는 슬레이트 그레이 색상, EIR 마감, 저광택입니다. 반면 산토스 마호가니는 짙은 버건디 색상, 프리마감, 고광택으로 표면 스크래치 및 결함을 더 쉽게 숨길 수 있습니다.

세 가지 목재 바닥재 샘플의 마모 테스트 중 COF의 변화는 그림 1에 표시되어 있습니다. 앤틱 버치 하드우드, 코트십 그레이 오크, 산토스 마호가니 샘플은 모두 다른 COF 거동을 보였습니다.

위의 그래프에서 앤틱 자작나무 경재는 전체 테스트 기간 동안 일정한 COF를 보인 유일한 샘플임을 확인할 수 있습니다. 코트십 그레이 오크의 COF가 급격히 증가한 후 점진적으로 감소한 것은 샘플의 표면 거칠기가 COF 거동에 크게 기여했음을 나타낼 수 있습니다. 샘플이 마모됨에 따라 표면 거칠기가 감소하고 더 균질해졌으며, 이는 기계적 마모로 인해 샘플 표면이 더 부드러워짐에 따라 COF가 감소한 것을 설명합니다. 산토스 마호가니의 COF는 테스트 초반에 점진적으로 부드럽게 증가하다가 갑자기 고르지 못한 COF 추세로 전환되었습니다. 이는 라미네이트 코팅이 마모되기 시작하자 스틸 볼(카운터 재료)이 목재 기판과 접촉하여 더 빠르고 난류적인 방식으로 마모되어 테스트가 끝날수록 더 시끄러운 COF 동작을 만들어 냈음을 나타낼 수 있습니다.

 

앤티크 자작나무 원목:

구애 그레이 오크:

산토스 마호가니

표 2는 마모 테스트를 수행한 후 모든 목재 바닥재 샘플에 대한 마모 트랙 스캔 및 분석 결과를 요약한 것입니다. 각 샘플에 대한 자세한 정보와 이미지는 그림 2-7에서 확인할 수 있습니다. 세 샘플 간의 마모율 비교를 통해 산토스 마호가니가 다른 두 샘플보다 기계적 마모에 대한 복원력이 떨어진다는 것을 알 수 있습니다. 앤틱 버치 하드우드와 코트십 그레이 오크는 마모율이 매우 비슷했지만 테스트 중 마모 거동은 크게 달랐습니다. 앤틱 버치 하드우드는 점진적이고 균일한 마모 경향을 보인 반면, 코트쉽 그레이 오크는 기존의 표면 질감과 마감으로 인해 얕고 움푹 패인 마모 트랙을 보였습니다.

결론

이 연구에서는 앤틱 버치 하드우드, 코트십 그레이 오크, 산토스 마호가니 등 세 가지 목재의 마찰 계수와 내마모성을 제어 및 모니터링 방식으로 평가하는 데 있어 나노베아 트라이보미터의 성능을 보여주었습니다. 앤티크 버치 하드우드의 우수한 기계적 특성은 더 나은 내마모성으로 이어집니다. 목재 표면의 질감과 균질성은 마모 거동에 중요한 역할을 합니다. 목재 세포 섬유 사이의 틈이나 균열과 같은 코트십 그레이 오크 표면 질감은 마모가 시작되고 확산되는 약한 지점이 될 수 있습니다.

이제 애플리케이션에 대해 이야기해 보겠습니다.