미국/글로벌: +1-949-461-9292
EUROPE: +39-011-3052-794
문의하기

카테고리: 프로파일 측정 | 평탄도 및 휨

 

3D 프로파일 측정을 이용한 거칠기 매핑 검사

거칠기 매핑 검사

3D 프로파일 측정 사용

작성자

DUANJIE, 박사

소개

표면 거칠기와 질감은 제품의 최종 품질과 성능에 영향을 미치는 중요한 요소입니다. 최상의 처리 및 제어 방법을 선택하려면 표면 거칠기, 질감, 일관성에 대한 철저한 이해가 필수적입니다. 결함이 있는 제품을 적시에 식별하고 생산 라인 조건을 최적화하려면 제품 표면에 대한 빠르고 정량화 가능하며 신뢰할 수 있는 인라인 검사가 필요합니다.

인라인 표면 검사를 위한 3D 비접촉식 프로파일로미터의 중요성

제품의 표면 결함은 재료 가공 및 제품 제조 과정에서 발생합니다. 인라인 표면 품질 검사는 최종 제품의 가장 엄격한 품질 관리를 보장합니다. 나노베아 3D 비접촉식 광학 프로파일러 접촉 없이 샘플의 거칠기를 결정하는 고유한 기능을 갖춘 색채광 기술을 활용합니다. 라인 센서를 사용하면 넓은 표면의 3D 프로파일을 고속으로 스캐닝할 수 있습니다. 분석 소프트웨어에 의해 실시간으로 계산된 거칠기 임계값은 빠르고 안정적인 합격/불합격 도구 역할을 합니다.

측정 목표

이 연구에서는 고속 센서가 장착된 나노베아 ST400을 사용하여 결함이 있는 테프론 샘플의 표면을 검사하여 나노베아의 성능을 보여줍니다.

생산 라인에서 빠르고 안정적인 표면 검사를 제공하는 비접촉식 프로로미터입니다.

나노비아

ST400

결과 및 토론

3D 표면 분석 거칠기 표준 샘플

거칠기 표준의 표면은 그림 1과 같이 192개의 밝은 선을 생성하는 고속 센서가 장착된 나노베아 ST400을 사용하여 스캔했습니다. 이 192개의 포인트가 동시에 샘플 표면을 스캔하기 때문에 스캔 속도가 크게 향상되었습니다.

그림 2는 거칠기 표준 샘플의 표면 높이 맵과 거칠기 분포 맵의 가색 보기를 보여줍니다. 그림 2a에서 거칠기 표준은 각 표준 거칠기 블록의 다양한 색상 그라데이션으로 표시된 것처럼 약간 기울어진 표면을 나타냅니다. 그림 2b에서는 서로 다른 거칠기 블록에서 균일한 거칠기 분포가 나타나며, 색상은 블록의 거칠기를 나타냅니다.

그림 3은 다양한 거칠기 임계값에 따라 분석 소프트웨어에서 생성된 합격/불합격 맵의 예를 보여줍니다. 표면 거칠기가 특정 임계값을 초과하면 거칠기 블록이 빨간색으로 강조 표시됩니다. 이를 통해 사용자는 거칠기 임계값을 설정하여 샘플 표면 마감의 품질을 결정할 수 있습니다.

그림 1: 거칠기 표준 샘플의 광학 라인 센서 스캔

a. 표면 높이 맵:

b. 러프니스 맵:

그림 2: 거칠기 표준 샘플의 표면 높이 맵 및 거칠기 분포 맵의 가색 보기입니다.

그림 3: 거칠기 임계값에 따른 합격/불합격 맵입니다.

결함이 있는 테온 샘플의 표면 검사

테온 샘플 표면의 표면 높이 맵, 거칠기 분포 맵 및 합격/불합격 거칠기 임계값 맵은 그림 4에 나와 있습니다. 표면 높이 맵에 표시된 것처럼 테온 샘플은 샘플의 오른쪽 중앙에 능선 형태가 있습니다.

a. 표면 높이 맵:

그림 4b의 팔레트에서 서로 다른 색상은 로컬 표면의 거칠기 값을 나타냅니다. 거칠기 맵은 테온 샘플의 온전한 영역에서 균일한 거칠기를 나타냅니다. 그러나 움푹 들어간 링과 마모 흉터 형태의 결함은 밝은 색상으로 강조 표시됩니다. 사용자는 그림 4c와 같이 표면 결함을 찾기 위해 합격/불합격 거칠기 임계값을 쉽게 설정할 수 있습니다. 이러한 툴을 통해 사용자는 생산 라인에서 제품 표면 품질을 현장에서 모니터링하고 결함이 있는 제품을 적시에 발견할 수 있습니다. 제품이 인라인 광학 센서를 통과할 때 실시간 거칠기 값이 계산되고 기록되므로 빠르고 신뢰할 수 있는 품질 관리 도구로 사용할 수 있습니다.

b. 러프니스 맵:

c. 합격/불합격 러프니스 임계값 맵:

그림 4: 표면 높이 맵, 거칠기 분포 맵 및 테온 샘플 표면의 합격/불합격 거칠기 임계값 맵입니다.

결론

이 애플리케이션에서는 광학 라인 센서가 장착된 나노베아 ST400 3D 비접촉식 광학 프로파일러가 효과적이고 효율적인 방식으로 신뢰할 수 있는 품질 관리 도구로 작동하는 방법을 보여주었습니다.

광학 라인 센서는 샘플 표면을 동시에 스캔하는 192개의 밝은 선을 생성하여 스캔 속도를 크게 향상시킵니다. 생산 라인에 설치하여 현장에서 제품의 표면 거칠기를 모니터링할 수 있습니다. 거칠기 임계값은 제품의 표면 품질을 판단하는 신뢰할 수 있는 기준으로 작용하여 사용자가 결함이 있는 제품을 제때 발견할 수 있도록 합니다.

여기에 표시된 데이터는 분석 소프트웨어에서 사용할 수 있는 계산의 일부만을 나타냅니다. 나노베아 프로파일로미터는 반도체, 마이크로일렉트로닉스, 태양광, 광섬유, 자동차, 항공우주, 야금, 기계 가공, 코팅, 제약, 생의학, 환경 등 다양한 분야의 거의 모든 표면을 측정합니다.

이제 애플리케이션에 대해 이야기해 보겠습니다.

휴대용 3D 프로파일로미터를 이용한 용접 표면 검사

용접 표면 검사

휴대용 3D 프로파일로미터 사용

작성자

크레이그 레싱

소개

일반적으로 육안 검사로 수행되는 특정 용접을 극도로 정밀하게 조사하는 것이 중요해질 수 있습니다. 정밀 분석이 필요한 특정 영역에는 후속 검사 절차에 관계없이 표면 균열, 다공성 및 미충진 크레이터가 포함됩니다. 치수/형상, 부피, 거칠기, 크기 등과 같은 용접 특성은 모두 중요한 평가를 위해 측정할 수 있습니다.

용접 표면 검사를 위한 3D 비접촉식 프로파일로미터의 중요성

터치 프로브나 간섭계와 같은 다른 기술과 달리 NANOVEA는 3D 비접촉 프로파일로미터, 축 색수차를 사용하여 거의 모든 표면을 측정할 수 있으며, 개방형 스테이징으로 인해 샘플 크기가 크게 달라질 수 있으며 샘플 준비가 필요하지 않습니다. 나노부터 매크로까지의 범위는 샘플 반사나 흡수의 영향이 전혀 없는 표면 프로필 측정 중에 얻어지며, 높은 표면 각도를 측정하는 고급 기능을 갖추고 있으며 결과를 소프트웨어로 조작할 필요가 없습니다. 투명, 불투명, 반사성, 확산성, 광택성, 거친 재질 등 모든 재료를 쉽게 측정합니다. NANOVEA 휴대용 프로파일로미터의 2D 및 2D 기능은 실험실과 현장 모두에서 전체 용접 표면 검사에 이상적인 장비입니다.

측정 목표

이 애플리케이션에서 나노베아 JR25 휴대용 프로파일러는 용접의 표면 거칠기, 모양 및 부피뿐만 아니라 주변 영역을 측정하는 데 사용됩니다. 이 정보는 용접 및 용접 공정의 품질을 적절히 조사하는 데 중요한 정보를 제공할 수 있습니다.

나노비아

JR25

테스트 결과

아래 이미지는 용접 및 주변 영역의 전체 3D 보기와 함께 용접의 표면 매개변수만 보여줍니다. 2D 단면 프로필은 아래와 같습니다.

샘플

위의 2D 단면 프로필을 3D에서 제거하면 용접의 치수 정보가 아래에서 계산됩니다. 아래는 용접에 대해서만 계산된 재료의 표면적과 부피입니다.

 HOLEPEAK
표면1.01 mm214.0mm2
볼륨8.799e-5 mm323.27 mm3
최대 깊이/높이0.0276 mm0.6195 mm
평균 깊이/높이 0.004024 mm 0.2298 mm

결론

이 애플리케이션에서는 나노베아 3D 비접촉 프로파일러가 용접 및 주변 표면의 중요한 특성을 정밀하게 특성화할 수 있는 방법을 보여주었습니다. 거칠기, 치수 및 부피로부터 품질 및 반복성에 대한 정량적 방법을 결정하거나 추가로 조사할 수 있습니다. 이 앱 노트의 예와 같은 샘플 용접은 사내 또는 현장 테스트를 위한 표준 탁상형 또는 휴대용 나노베아 프로파일러를 사용하여 쉽게 분석할 수 있습니다.

이제 애플리케이션에 대해 이야기해 보겠습니다.

3D 프로파일 측정을 사용한 유리 섬유 표면 형상

유리 섬유 표면 지형

3D 프로파일 측정 사용

작성자

크레이그 레싱

소개

유리섬유는 매우 미세한 유리 섬유로 만든 소재입니다. 많은 폴리머 제품의 강화제로 사용되며, 섬유 강화 폴리머(FRP) 또는 유리 강화 플라스틱(GRP)으로 제대로 알려진 복합 소재를 일반적으로 "유리 섬유"라고 부릅니다.

품질 관리를 위한 표면 계측 검사의 중요성

유리섬유 보강재의 용도는 다양하지만, 대부분의 응용 분야에서는 가능한 한 강도가 높은 것이 중요합니다. 유리섬유 복합재는 무게 대비 강도가 가장 높은 소재 중 하나이며, 경우에 따라서는 파운드당 강도가 강철보다 더 강한 경우도 있습니다. 높은 강도 외에도 노출된 표면적을 최대한 작게 만드는 것도 중요합니다. 유리 섬유 표면이 넓으면 구조물이 화학적 공격에 더 취약해지고 재료가 팽창할 수 있습니다. 따라서 표면 검사는 품질 관리 생산에 매우 중요합니다.

측정 목표

이 애플리케이션에서 NANOVEA ST400은 유리섬유 복합재 표면의 거칠기 및 평탄도를 측정하는 데 사용됩니다. 이러한 표면 특징을 정량화함으로써 더 강하고 오래 지속되는 유리섬유 복합 재료를 만들거나 최적화할 수 있습니다.

나노비아

ST400

측정 매개변수

프로브 1 mm
획득률300Hz
평균화1
측정된 표면5mm x 2mm
스텝 크기5 µm x 5 µm
스캔 모드일정한 속도

프로브 사양

측정 범위1 mm
Z 해상도 25nm
Z 정확도200nm
측면 해상도 2 μm

결과

거짓 색상 보기

3D 표면 평탄도

3D 표면 거칠기

Sa15.716 μm산술 평균 높이
Sq19.905 μm평균 제곱근 높이
Sp116.74 μm최대 피크 높이
Sv136.09 μm최대 피트 높이
Sz252.83 μm최대 높이
Ssk0.556기울기
Ssu3.654첨도

결론

결과에서 볼 수 있듯이 NANOVEA ST400 Optical은 프로파일러 유리섬유 복합재 표면의 거칠기와 평탄도를 정확하게 측정할 수 있었습니다. 여러 배치의 섬유 복합재 및/또는 특정 기간에 걸쳐 데이터를 측정하여 다양한 유리 섬유 제조 공정과 시간 경과에 따른 반응에 대한 중요한 정보를 제공할 수 있습니다. 따라서 ST400은 유리섬유 복합재료의 품질 관리 프로세스를 강화하기 위한 실행 가능한 옵션입니다.

이제 애플리케이션에 대해 이야기해 보겠습니다.

3D 프로파일 측정을 사용한 가죽 표면 마감 처리

가공 가죽

3D 프로파일 측정을 사용한 표면 마감

작성자

크레이그 레싱

소개

가죽 가죽의 태닝 공정이 완료되면 가죽 표면은 다양한 모양과 촉감을 위해 여러 가지 마감 공정을 거칠 수 있습니다. 이러한 기계적 공정에는 스트레칭, 버핑, 샌딩, 엠보싱, 코팅 등이 포함될 수 있습니다. 가죽의 최종 용도에 따라 더 정밀하고 제어 가능하며 반복 가능한 가공이 필요할 수도 있습니다.

프로파일 측정 검사의 중요성 R&D 및 품질 관리

육안 검사 방법의 편차가 크고 신뢰성이 낮기 때문에 마이크로 및 나노 스케일 특징을 정확하게 정량화할 수 있는 도구는 가죽 마감 공정을 개선할 수 있습니다. 가죽 표면 마감을 정량화할 수 있는 방식으로 이해하면 데이터 기반 표면 처리 선택을 개선하여 최적의 마감 결과를 얻을 수 있습니다. 나노베아 3D 비접촉식 프로파일러 는 색채 공초점 기술을 활용하여 완성된 가죽 표면을 측정하고 시장에서 가장 높은 반복성과 정확도를 제공합니다. 프로브 접촉, 표면 변화, 각도, 흡수 또는 반사율로 인해 다른 기술이 신뢰할 수 있는 데이터를 제공하지 못하는 경우, 나노베아 프로파일로미터가 성공합니다.

측정 목표

이 애플리케이션에서 NANOVEA ST400은 서로 다르지만 밀접하게 가공된 두 가죽 샘플의 표면 마감을 측정하고 비교하는 데 사용됩니다. 표면 프로파일에서 여러 표면 파라미터가 자동으로 계산됩니다.

여기서는 비교 평가를 위해 표면 거칠기, 딤플 깊이, 딤플 피치 및 딤플 직경에 초점을 맞출 것입니다.

나노비아

ST400

결과: 샘플 1

ISO 25178

높이 매개변수

기타 3D 매개변수

결과: 샘플 2

ISO 25178

높이 매개변수

기타 3D 매개변수

깊이 비교

각 샘플의 깊이 분포입니다.
다음에서 많은 수의 깊은 보조개가 관찰되었습니다.
샘플 1.

피치 비교

딤플 사이의 피치 샘플 1 약간 더 작습니다.
보다
샘플 2이지만 둘 다 비슷한 분포를 보입니다.

 평균 직경 비교

딤플의 평균 직경 분포가 비슷합니다,
와 함께
샘플 1 평균 직경이 약간 더 작은 것으로 나타났습니다.

결론

이 애플리케이션에서는 나노베아 ST400 3D 프로파일로미터가 가공 가죽의 표면 마감을 정밀하게 특성화할 수 있는 방법을 보여주었습니다. 이 연구에서는 표면 거칠기, 딤플 깊이, 딤플 피치 및 딤플 직경을 측정할 수 있는 기능을 통해 육안 검사로는 명확하지 않을 수 있는 두 샘플의 마감과 품질 차이를 정량화할 수 있었습니다.

전반적으로 샘플 1과 샘플 2의 3D 스캔 외형에는 눈에 띄는 차이가 없었습니다. 그러나 통계 분석에서는 두 샘플 사이에 분명한 차이가 있습니다. 샘플 1은 샘플 2에 비해 더 작은 직경, 더 큰 깊이, 더 작은 딤플 대 딤플 피치를 가진 더 많은 수의 딤플을 포함하고 있습니다.

추가 연구가 가능하다는 점에 유의하세요. 특정 관심 영역은 통합 AFM 또는 현미경 모듈을 사용하여 추가로 분석할 수 있습니다. 나노베아 3D 프로파일로미터의 속도는 실험실 또는 연구용으로 20mm/s에서 1m/s까지 다양하여 고속 검사의 요구를 충족하며, 맞춤형 크기, 속도, 스캐닝 기능, 클래스 1 클린룸 준수, 인덱싱 컨베이어 또는 인라인 또는 온라인 통합을 위해 구축할 수 있습니다.

이제 애플리케이션에 대해 이야기해 보겠습니다.

휴대용 3D 프로파일로미터를 사용한 유기 표면 형상

유기적 표면 지형

휴대용 3D 프로파일로미터 사용

작성자

크레이그 레싱

소개

자연은 향상된 표면 구조를 개발하는 데 중요한 영감의 원천이 되었습니다. 자연에서 발견되는 표면 구조를 이해함으로써 도마뱀의 발을 기반으로 한 접착력 연구, 해삼의 질감 변화를 기반으로 한 저항성 연구, 나뭇잎을 기반으로 한 발수성 연구 등이 진행되었습니다. 이러한 표면은 생체 의학부터 의류, 자동차에 이르기까지 다양한 분야에 응용될 수 있습니다. 이러한 표면 혁신이 성공하려면 표면 특성을 모방하고 재현할 수 있는 제작 기술을 개발해야 합니다. 이 과정에서 식별과 제어가 필요합니다.

유기 표면을 위한 휴대용 3D 비접촉식 광학 프로파일러의 중요성

색채광(Chromatic Light) 기술을 활용한 NANOVEA Jr25 Portable 광학 프로파일러 거의 모든 재료를 측정할 수 있는 뛰어난 능력을 가지고 있습니다. 여기에는 자연의 광범위한 표면 특성 내에서 발견되는 독특하고 가파른 각도, 반사 및 흡수 표면이 포함됩니다. 3D 비접촉 측정은 완전한 3D 이미지를 제공하여 표면 특징을 보다 완벽하게 이해할 수 있도록 해줍니다. 3D 기능이 없으면 자연 표면 식별은 2D 정보나 현미경 이미징에만 의존하게 되며, 이는 연구된 표면을 적절하게 모방하기에 충분한 정보를 제공하지 못합니다. 질감, 형태, 치수 등 표면 특성의 전체 범위를 이해하는 것이 성공적인 제작에 매우 중요합니다.

현장에서 실험실 수준의 결과를 쉽게 얻을 수 있는 기능은 새로운 연구 기회의 문을 열어줍니다.

측정 목표

이 애플리케이션에서는 나노비아 Jr25는 잎의 표면을 측정하는 데 사용됩니다. 3D 표면 스캔 후 자동으로 계산할 수 있는 표면 매개변수 목록은 무궁무진합니다.

여기서는 3D 표면을 검토하고
추가 분석할 관심 영역은 다음과 같습니다.
표면 거칠기, 채널 및 지형을 정량화하고 조사합니다.

나노비아

JR25

테스트 조건

고랑 깊이

고랑의 평균 밀도: 16.471cm/cm2
고랑의 평균 깊이: 97.428 μm
최대 깊이: 359.769 μm

결론

이 애플리케이션에서는 나노비아 Jr25 휴대용 3D 비접촉식 광학 프로파일러는 현장에서 잎 표면의 지형과 나노미터 단위의 세부 사항을 모두 정밀하게 특성화할 수 있습니다. 이러한 3D 표면 측정을 통해 관심 영역을 빠르게 식별한 다음 무한한 연구 목록으로 분석할 수 있습니다(치수, 거칠기 마감 텍스처, 모양 형태 지형, 평탄도 휨 평탄도, 부피 면적, 단차 높이 등). 2D 단면을 쉽게 선택하여 세부 사항을 분석할 수 있습니다. 이 정보를 통해 완벽한 표면 측정 리소스 세트를 사용하여 유기 표면을 광범위하게 조사할 수 있습니다. 특정 관심 영역은 테이블 탑 모델에 통합된 AFM 모듈을 사용하여 추가로 분석할 수 있습니다.

나노비아 는 현장 연구를 위한 휴대용 고속 프로파일러와 다양한 실험실 기반 시스템을 제공하며 실험실 서비스도 제공합니다.

이제 애플리케이션에 대해 이야기해 보겠습니다.

프레넬 렌즈 지형

프레넬 렌즈

3D 프로파일 측정을 사용한 치수

작성자

두안지에 리 & 벤자민 멜

소개

렌즈는 빛을 투과하고 굴절시키는 축 대칭의 광학 장치입니다. 간단한 렌즈는 빛을 수렴하거나 발산하기 위한 단일 광학 부품으로 구성됩니다. 구면은 렌즈를 만드는 데 이상적인 모양은 아니지만 유리를 갈고 연마할 수 있는 가장 단순한 모양으로 자주 사용됩니다.

프레넬 렌즈는 일련의 동심원 고리로 구성되며, 폭이 수천분의 1인치 정도로 작은 단순한 렌즈의 얇은 부분입니다. 프레넬 렌즈는 조리개가 크고 초점 거리가 짧으며, 컴팩트한 디자인으로 동일한 광학 특성을 가진 기존 렌즈에 비해 필요한 재료의 무게와 부피를 줄입니다. 프레넬 렌즈의 얇은 기하학적 구조로 인해 흡수로 인해 손실되는 빛의 양은 매우 적습니다.

프레넬 렌즈 검사를 위한 3D 비접촉식 프로파일 측정의 중요성

프레넬 렌즈는 자동차 산업, 등대, 태양 에너지 및 항공모함의 광학 착륙 시스템에 광범위하게 사용됩니다. 투명한 플라스틱으로 렌즈를 성형하거나 스탬핑하면 생산 비용을 효율적으로 만들 수 있습니다. 프레넬 렌즈의 서비스 품질은 주로 동심 링의 정밀도와 표면 품질에 따라 달라집니다. NANOVEA는 터치 프로브 방식과 달리 광학 프로파일러 표면을 건드리지 않고 3D 표면 측정을 수행하여 새로운 긁힘 위험을 방지합니다. Chromatic Light 기술은 다양한 형상의 렌즈와 같이 복잡한 모양을 정밀하게 스캐닝하는 데 이상적입니다.

프레넬 렌즈 회로도

투명 플라스틱 프레넬 렌즈는 몰딩 또는 스탬핑으로 제조할 수 있습니다. 정확하고 효율적인 품질 관리는 생산 금형이나 스탬프의 결함을 발견하는 데 매우 중요합니다. 동심 링의 높이와 피치를 측정하여 측정값을 렌즈 제조업체에서 제공한 사양 값과 비교함으로써 생산 변동을 감지할 수 있습니다.

렌즈 프로파일을 정밀하게 측정해야 금형이나 스탬프가 제조업체 사양에 맞게 적절하게 가공됩니다. 또한 스탬프는 시간이 지남에 따라 점진적으로 마모되어 초기 모양을 잃을 수 있습니다. 렌즈 제조업체 사양에서 일관되게 벗어나면 금형을 교체해야 한다는 긍정적인 신호입니다.

측정 목표

이 애플리케이션에서는 고속 센서가 장착된 3D 비접촉식 프로파일러인 나노베아 ST400을 통해 복잡한 형상의 광학 부품에 대한 포괄적인 3D 프로파일 분석을 제공하며, 크로매틱 라이트 기술의 놀라운 기능을 보여주기 위해 프레넬 렌즈에서 윤곽 분석을 수행합니다.

나노비아

ST400

이 연구에 사용된 2.3" x 2.3" 아크릴 프레넬 렌즈는 다음과 같이 구성됩니다. 

일련의 동심원 링과 복잡한 톱니 모양의 단면 프로파일이 있습니다. 

초점 거리는 1.5인치, 유효 크기 직경은 2.0인치입니다, 

인치당 125개의 홈과 1.49의 굴절률.

프레넬 렌즈를 스캔한 나노베아 ST400은 동심원 고리의 높이가 중앙에서 바깥쪽으로 이동하면서 눈에 띄게 증가하는 것을 보여줍니다.

2D 거짓 색상

높이 표현

3D 보기

추출된 프로필

피크 & 밸리

프로필의 차원 분석

결론

이 애플리케이션에서 나노베아 ST400 비접촉식 광학 프로파일러가 프레넬 렌즈의 표면 형상을 정확하게 측정하는 것을 보여주었습니다. 

나노베아 분석 소프트웨어를 사용하여 복잡한 톱니 모양의 프로파일에서 높이와 피치의 치수를 정확하게 측정할 수 있습니다. 사용자는 제조된 렌즈의 링 높이와 피치 치수를 이상적인 링 사양과 비교하여 생산 금형 또는 스탬프의 품질을 효과적으로 검사할 수 있습니다.

여기에 표시된 데이터는 분석 소프트웨어에서 사용할 수 있는 계산의 일부에 불과합니다. 

나노베아 광학 프로파일러는 반도체, 마이크로일렉트로닉스, 태양광, 광섬유, 자동차, 항공우주, 야금, 기계 가공, 코팅, 제약, 생의학, 환경 등의 분야에서 거의 모든 표면을 측정합니다.

 

이제 애플리케이션에 대해 이야기해 보겠습니다.

가공 부품 QC

가공 부품 검사

기계 부품

3D 프로파일 측정을 사용한 CAD 모델 검사

작성자:

Duanjie Li, PhD

개정자

조슬린 에스파르자

프로파일로미터를 이용한 가공 부품 검사

소개

복잡한 형상을 만들 수 있는 정밀 가공에 대한 수요는 다양한 산업 분야에서 증가하고 있습니다. 항공우주, 의료, 자동차부터 기술 기어, 기계, 악기에 이르기까지 지속적인 혁신과 진화로 인해 기대치와 정확도 기준이 새로운 차원으로 높아지고 있습니다. 이에 따라 제품의 최고 품질을 보장하기 위한 엄격한 검사 기술과 기기에 대한 수요가 증가하고 있습니다.

부품 검사를 위한 3D 비접촉식 프로파일 측정의 중요성

공차 및 생산 표준 준수 여부를 확인하려면 가공된 부품의 특성을 CAD 모델과 비교하는 것이 필수적입니다. 부품의 마모로 인해 교체가 필요할 수 있으므로 서비스 기간 동안의 검사도 매우 중요합니다. 필요한 사양에서 벗어난 부분을 적시에 식별하면 비용이 많이 드는 수리, 생산 중단 및 평판 손상을 방지하는 데 도움이 됩니다.

NANOVEA는 터치 프로브 방식과 달리 광학 프로파일러 접촉 없이 3D 표면 스캔을 수행하여 가장 높은 정확도로 복잡한 형상을 빠르고 정밀하며 비파괴적으로 측정할 수 있습니다.

측정 목표

이 애플리케이션에서는 치수, 반경 및 거칠기에 대한 포괄적인 표면 검사를 수행하는 고속 센서가 장착된 3D 비접촉식 프로파일러인 NANOVEA HS2000을 소개합니다. 

40초 이내에 모두 완료됩니다.

나노비아

HS2000

CAD 모델

가공된 부품이 원하는 사양, 공차 및 표면 마감을 충족하는지 확인하려면 부품의 치수와 표면 거칠기를 정밀하게 측정하는 것이 중요합니다. 검사 대상 부품의 3D 모델과 엔지니어링 도면이 아래에 제시되어 있습니다. 

거짓 색상 보기

CAD 모델과 스캔한 가공 부품 표면의 가색 보기를 그림 3에서 비교합니다. 샘플 표면의 높이 변화는 색상의 변화로 확인할 수 있습니다.

그림 2에 표시된 대로 3D 표면 스캔에서 3개의 2D 프로파일을 추출하여 가공된 부품의 치수 공차를 추가로 확인합니다.

프로필 비교 및 결과

프로파일 1 ~ 3은 그림 3 ~ 5에 나와 있습니다. 정량적 공차 검사는 엄격한 제조 표준을 준수하기 위해 측정된 프로파일을 CAD 모델과 비교하여 수행됩니다. 프로파일 1과 프로파일 2는 곡면 가공 부품에서 서로 다른 영역의 반경을 측정합니다. 프로파일 2의 높이 변화는 156mm 길이에 걸쳐 30µm로 원하는 ±125µm 공차 요건을 충족합니다. 

공차 한계값을 설정하면 분석 소프트웨어가 가공된 부품의 합격 여부를 자동으로 판단할 수 있습니다.

프로파일로미터를 이용한 기계 부품 검사

가공된 부품 표면의 거칠기와 균일성은 품질과 기능을 보장하는 데 중요한 역할을 합니다. 그림 6은 표면 조도를 정량화하는 데 사용된 가공된 부품의 상위 스캔에서 추출한 표면 영역입니다. 평균 표면 거칠기(Sa)는 2.31µm로 계산되었습니다.

결론

이 연구에서는 고속 센서가 장착된 나노베아 HS2000 비접촉식 프로파일러가 치수 및 거칠기에 대한 포괄적인 표면 검사를 수행하는 방법을 보여주었습니다. 

고해상도 스캔을 통해 사용자는 가공된 부품의 세부적인 형태와 표면 특징을 측정하고 이를 CAD 모델과 정량적으로 비교할 수 있습니다. 또한 이 기기는 스크래치 및 균열을 포함한 모든 결함을 감지할 수 있습니다. 

고급 윤곽 분석은 가공된 부품이 설정된 사양을 충족하는지 여부를 판단할 뿐만 아니라 마모된 부품의 고장 메커니즘을 평가하는 데도 탁월한 도구로 사용됩니다.

여기에 표시된 데이터는 모든 나노베아 광학 프로파일러에 장착된 고급 분석 소프트웨어로 가능한 계산의 일부에 불과합니다.

 

이제 애플리케이션에 대해 이야기해 보겠습니다.

인라인 거칠기 검사

인라인 프로파일러를 통한 즉각적인 오류 감지

자세히 알아보기

인라인 거칠기 검사를 위한 비접촉식 프로파일러의 중요성

표면 결함은 재료 가공 및 제품 제조에서 발생합니다. 인라인 표면 품질 검사는 최종 제품의 가장 엄격한 품질 관리를 보장합니다. 나노베아 3D 비접촉 프로파일로미터 접촉 없이 샘플의 거칠기를 결정하는 고유한 기능을 갖춘 색채 공초점 기술을 활용합니다. 여러 프로파일러 센서를 설치하여 제품의 다양한 영역의 거칠기와 질감을 동시에 모니터링할 수 있습니다. 분석 소프트웨어에 의해 실시간으로 계산된 거칠기 임계값은 빠르고 안정적인 합격/불합격 도구 역할을 합니다.

측정 목표

이 연구에서는 포인트 센서가 장착된 나노베아 거칠기 검사 컨베이어 시스템을 사용하여 아크릴 및 사포 샘플의 표면 거칠기를 검사합니다. 생산 라인에서 실시간으로 빠르고 안정적인 인라인 거칠기 검사를 제공하는 나노비아 비접촉식 프로파일로미터의 성능을 보여줍니다.

결과 및 토론

컨베이어 프로파일로미터 시스템은 트리거 모드와 연속 모드의 두 가지 모드로 작동할 수 있습니다. 그림 2에서 볼 수 있듯이 트리거 모드에서는 샘플이 광학 프로파일러 헤드 아래를 통과할 때 표면 거칠기가 측정됩니다. 이에 비해 연속 모드는 금속판이나 직물과 같은 연속 시료의 표면 거칠기를 중단 없이 측정합니다. 여러 광학 프로파일러 센서를 설치하여 다양한 샘플 영역의 거칠기를 모니터링하고 기록할 수 있습니다.

 

실시간 거칠기 검사 측정 중에는 그림 4 및 그림 5와 같이 소프트웨어 창에 합격 및 불합격 경고가 표시됩니다. 거칠기 값이 지정된 임계값 내에 있으면 측정된 거칠기가 녹색으로 강조 표시됩니다. 그러나 측정된 표면 거칠기가 설정된 임계값 범위를 벗어나면 강조 표시가 빨간색으로 바뀝니다. 이 기능은 사용자가 제품의 표면 마감 품질을 확인할 수 있는 도구를 제공합니다.

다음 섹션에서는 아크릴과 사포 등 두 가지 유형의 샘플을 사용하여 검사 시스템의 트리거 및 연속 모드를 시연합니다.

트리거 모드: 아크릴 샘플의 표면 검사

일련의 아크릴 샘플이 컨베이어 벨트 위에 정렬되어 그림 1과 같이 광학 프로파일러 헤드 아래로 이동합니다. 그림 6의 가색 보기는 표면 높이의 변화를 보여줍니다. 거울처럼 완성된 아크릴 샘플 중 일부는 그림 6b와 같이 거친 표면 질감을 만들기 위해 샌딩 처리되었습니다.

아크릴 샘플이 광학 프로파일러 헤드 아래에서 일정한 속도로 움직이면 그림 7과 그림 8과 같이 표면 프로파일이 측정됩니다. 측정된 프로파일의 거칠기 값은 동시에 계산되어 임계값과 비교됩니다. 거칠기 값이 설정된 임계값을 초과하면 빨간색 불합격 경고가 시작되어 사용자가 생산 라인에서 불량 제품을 즉시 감지하고 위치를 파악할 수 있습니다.

연속 모드: 사포 샘플의 표면 검사

그림 9와 같이 사포 샘플 표면의 표면 높이 맵, 거칠기 분포 맵, 합격/불합격 거칠기 임계값 맵을 확인할 수 있습니다. 사포 샘플은 표면 높이 맵에서 볼 수 있듯이 사용된 부분에 몇 개의 높은 피크가 있습니다. 그림 9C의 팔레트에서 다른 색상은 로컬 표면의 거칠기 값을 나타냅니다. 거칠기 맵에서 사포 샘플의 온전한 영역은 균일한 거칠기를 나타내는 반면, 사용된 영역은 진한 파란색으로 강조 표시되어 이 영역의 거칠기 값이 감소되었음을 나타냅니다. 그림 9D와 같이 이러한 영역을 찾기 위해 합격/불합격 거칠기 임계값을 설정할 수 있습니다.

사포가 인라인 프로파일러 센서 아래를 계속 통과하면 그림 10과 같이 실시간 로컬 거칠기 값이 계산되고 기록됩니다. 설정된 거칠기 임계값에 따라 소프트웨어 화면에 합격/불합격 경고가 표시되어 빠르고 신뢰할 수 있는 품질 관리 도구로 사용됩니다. 생산 라인의 제품 표면 품질을 현장에서 검사하여 결함이 있는 부분을 적시에 발견할 수 있습니다.

결론

이 애플리케이션에서는 광학 비접촉식 프로파일러 센서가 장착된 나노베아 컨베이어 프로파일로미터가 신뢰할 수 있는 인라인 품질 관리 도구로 효과적이고 효율적으로 작동하는 것을 보여주었습니다.

검사 시스템을 생산 라인에 설치하여 현장에서 제품의 표면 품질을 모니터링할 수 있습니다. 거칠기 임계값은 제품의 표면 품질을 판단하는 신뢰할 수 있는 기준으로 작동하여 사용자가 결함이 있는 제품을 제때 발견할 수 있도록 합니다. 다양한 유형의 제품에 대한 검사 요구 사항을 충족하기 위해 트리거 모드와 연속 모드의 두 가지 검사 모드가 제공됩니다.

여기에 표시된 데이터는 분석 소프트웨어에서 사용할 수 있는 계산의 일부만을 나타냅니다. 나노베아 프로파일로미터는 반도체, 마이크로일렉트로닉스, 태양광, 섬유, 광학, 자동차, 항공우주, 야금, 기계 가공, 코팅, 제약, 생의학, 환경 등 다양한 분야의 거의 모든 표면을 측정합니다.

이제 애플리케이션에 대해 이야기해 보겠습니다.

비접촉 프로파일 측정을 통한 1페니의 3D 표면 분석

동전에 대한 비접촉 프로파일 측정의 중요성

화폐는 상품이나 서비스와 거래되기 때문에 현대 사회에서 매우 높은 가치를 지니고 있습니다. 동전과 종이 지폐 화폐는 많은 사람들의 손에 유통됩니다. 물리적 통화의 지속적인 이동은 표면 변형을 만듭니다. 나노베아의 3D 프로파일 미터 다양한 연도에 주조된 동전의 지형을 스캔하여 표면 차이를 조사합니다.

동전의 특징은 공통된 물건이기 때문에 일반 대중이 쉽게 알아볼 수 있습니다. 1페니는 Nanovea의 고급 표면 분석 소프트웨어인 Mountains 3D의 장점을 소개하는 데 이상적입니다. 3D 프로파일로미터로 수집된 표면 데이터를 사용하면 표면 빼기 및 2D 윤곽 추출을 통해 복잡한 형상에 대한 높은 수준의 분석이 가능합니다. 제어된 마스크, 스탬프 또는 몰드를 사용한 표면 추출은 제조 공정의 품질을 비교하는 반면, 윤곽선 추출은 치수 분석을 통해 공차를 식별합니다. Nanovea의 3D 프로파일로미터 및 Mountains 3D 소프트웨어는 동전과 같이 겉으로는 단순해 보이는 물체의 미크론 미만 지형을 조사합니다.



측정 목표

나노비아의 고속 라인 센서를 사용하여 5페니의 전체 윗면을 스캔했습니다. 각 페니의 내부 및 외부 반경은 마운틴 고급 분석 소프트웨어를 사용하여 측정했습니다. 관심 영역의 각 페니 표면에서 직접 표면 감산을 통해 표면 변형을 정량화했습니다.

 



결과 및 토론

3D 표면

나노베아 HS2000 프로파일로미터는 10um x 10um 스텝 크기로 20mm x 20mm 영역에서 4백만 개의 포인트를 스캔하여 동전 표면을 획득하는 데 24초밖에 걸리지 않았습니다. 아래는 스캔의 높이 맵과 3D 시각화입니다. 3D 보기는 눈으로 감지할 수 없는 작은 디테일까지 포착하는 고속 센서의 능력을 보여줍니다. 동전 표면 전체에 작은 스크래치가 많이 보입니다. 3D 보기에서 보이는 동전의 질감과 거칠기를 조사합니다.

 










차원 분석

페니의 윤곽을 추출하고 치수 분석을 통해 가장자리 피처의 내경과 외경을 얻었습니다. 외경은 평균 9.500mm ± 0.024, 내경은 평균 8.960mm ± 0.032였습니다. 2D 및 3D 데이터 소스에서 마운틴 3D가 수행할 수 있는 추가 치수 분석은 거리 측정, 단차 높이, 평탄도 및 각도 계산입니다.







표면 빼기

그림 5는 표면 차감 분석의 관심 영역을 보여줍니다. 2007년 페니는 4개의 오래된 페니에 대한 기준 표면으로 사용되었습니다. 2007년 동전 표면에서 표면 빼기는 구멍/피크가 있는 동전 간의 차이를 보여줍니다. 총 표면 부피 차이는 구멍/피크의 부피를 더하여 얻습니다. RMS 오차는 페니 표면이 서로 얼마나 밀접하게 일치하는지를 나타냅니다.


 









결론





나노비아의 고속 HS2000L은 서로 다른 해에 주조된 5페니 동전 5개를 스캔했습니다. 마운틴 3D 소프트웨어는 윤곽 추출, 치수 분석 및 표면 감산을 사용하여 각 동전의 표면을 비교했습니다. 이 분석은 동전 사이의 내부 및 외부 반경을 명확하게 정의하는 동시에 표면 특징 차이를 직접 비교합니다. 나노미터 수준의 해상도로 모든 표면을 측정할 수 있는 나노베아 3D 프로파일로미터의 기능과 마운틴 3D 분석 기능을 결합하면 연구 및 품질 관리 분야에서 활용할 수 있는 응용 분야는 무궁무진합니다.

 


이제 애플리케이션에 대해 이야기해 보겠습니다.

3D 프로파일 측정을 통한 허니콤 패널 표면 마감

소개


허니콤 패널 표면의 거칠기, 다공성 및 질감은 최종 패널 설계를 위해 정량화해야 하는 중요한 요소입니다. 이러한 표면 품질은 패널 표면의 미적 및 기능적 특성과 직접적인 상관관계가 있습니다. 표면 질감과 다공성을 더 잘 이해하면 패널 표면 처리 및 제조 가능성을 최적화하는 데 도움이 될 수 있습니다. 허니콤 패널의 정량적이고 정밀하며 신뢰할 수 있는 표면 측정은 애플리케이션 및 도장 요구 사항에 대한 표면 매개변수를 제어하는 데 필요합니다. 나노비아 3D 비접촉 센서는 이러한 패널 표면을 정밀하게 측정할 수 있는 고유한 색채 공초점 기술을 활용합니다.



측정 목표


본 연구에서는 고속 라인 센서가 장착된 Nanovea HS2000 플랫폼을 사용하여 표면 마감이 다른 두 개의 허니컴 패널을 측정하고 비교했습니다. 나노베아를 선보입니다. 비접촉 프로파일로미터빠르고 정확한 3D 프로파일링 측정과 표면 마감에 대한 포괄적이고 심층적인 분석을 제공하는 의 능력입니다.



결과 및 토론

다양한 표면 마감을 가진 두 개의 허니콤 패널 샘플, 즉 샘플 1과 샘플 2의 표면을 측정했습니다. 샘플 1과 샘플 2 표면의 가색 및 3D 뷰는 각각 그림 3과 그림 4에 나와 있습니다. 거칠기 및 평탄도 값은 고급 분석 소프트웨어로 계산되었으며 표 1에서 비교됩니다. 샘플 2는 샘플 1에 비해 더 다공성 표면을 나타냅니다. 그 결과, 샘플 2의 거칠기 Sa는 14.7µm로 샘플 1의 Sa 값인 4.27µm에 비해 더 높습니다.

벌집 패널 표면의 2D 프로파일을 그림 5에서 비교하여 샘플 표면의 여러 위치에서 높이 변화를 시각적으로 비교할 수 있습니다. 샘플 1은 가장 높은 피크와 가장 낮은 골짜기 위치 사이에 약 25µm의 높이 변화가 있음을 관찰할 수 있습니다. 반면에 샘플 2는 2D 프로파일 전체에 걸쳐 여러 개의 깊은 기공을 보여줍니다. 고급 분석 소프트웨어는 그림 4.b 샘플 2의 표에 표시된 것처럼 상대적으로 깊은 6개의 기공을 자동으로 찾아 깊이를 측정할 수 있는 기능을 갖추고 있습니다. 6개의 기공 중 가장 깊은 기공은 최대 깊이가 거의 90µm에 달합니다(4단계).

샘플 2의 기공 크기와 분포를 추가로 조사하기 위해 기공 평가를 수행하고 다음 섹션에서 논의했습니다. 슬라이스 보기는 그림 5에 표시되어 있으며 결과는 표 2에 요약되어 있습니다. 그림 5에서 파란색으로 표시된 기공이 샘플 표면에 비교적 균일하게 분포되어 있는 것을 관찰할 수 있습니다. 기공의 투영 면적은 전체 샘플 표면의 18.9%를 차지합니다. 전체 기공의 mm²당 부피는 ~0.06 mm³입니다. 기공의 평균 깊이는 42.2 µm이고 최대 깊이는 108.1 µm입니다.

결론



이 애플리케이션에서는 고속 라인 센서가 장착된 나노베아 HS2000 플랫폼이 허니콤 패널 샘플의 표면 마감을 빠르고 정확하게 분석하고 비교하는 데 이상적인 도구임을 보여주었습니다. 고급 분석 소프트웨어와 결합된 고해상도 프로파일 측정 스캔을 통해 허니콤 패널 샘플의 표면 마감을 종합적이고 정량적으로 평가할 수 있습니다.

여기에 표시된 데이터는 분석 소프트웨어에서 사용할 수 있는 계산의 일부에 불과합니다. 나노베아 프로파일로미터는 반도체, 마이크로전자, 태양광, 광섬유, 자동차, 항공우주, 야금, 기계 가공, 코팅, 제약, 생의학, 환경 및 기타 여러 산업 분야의 광범위한 응용 분야에서 거의 모든 표면을 측정합니다.

이제 애플리케이션에 대해 이야기해 보겠습니다.