미국/글로벌: +1-949-461-9292
EUROPE: +39-011-3052-794
문의하기

산업용 코팅 스크래치 및 마모 평가

산업용 코팅

트라이보미터를 사용한 스크래치 및 마모 평가

작성자

DUANJIE LI, 박사 및 안드레아 헤르만(ANDREA HERRMANN)

소개

아크릴 우레탄 페인트는 바닥 페인트, 자동차 페인트 등 다양한 산업 분야에서 널리 사용되는 속건성 보호 코팅의 일종입니다. 바닥 페인트로 사용하면 보도, 연석 및 주차장과 같이 발과 고무 바퀴가 많이 다니는 구역에 사용할 수 있습니다.

품질 관리를 위한 스크래치 및 마모 테스트의 중요성

전통적으로 테이버 마모 테스트는 ASTM D4060 표준에 따라 아크릴 우레탄 바닥 페인트의 내마모성을 평가하기 위해 수행되었습니다. 그러나 표준에 언급된 바와 같이 "일부 재료의 경우, 테이버 연마기를 사용한 마모 테스트는 테스트 중 휠의 연마 특성 변화로 인해 편차가 발생할 수 있습니다."1 이로 인해 테스트 결과의 재현성이 떨어지고 다른 실험실에서 보고된 값을 비교하기 어려울 수 있습니다. 또한 테이퍼 마모 테스트에서 내마모성은 지정된 마모 사이클 횟수에서 무게의 손실로 계산됩니다. 그러나 아크릴 우레탄 바닥 페인트의 권장 건조막 두께는 37.5-50 μm2입니다.

테이버 연마기의 공격적인 마모 공정은 아크릴 우레탄 코팅을 빠르게 마모시키고 기판에 질량 손실을 일으켜 페인트 중량 손실 계산에 상당한 오류를 초래할 수 있습니다. 마모 테스트 중 페인트에 연마 입자를 주입하는 것도 오류의 원인이 됩니다. 따라서 페인트의 재현 가능한 마모 평가를 보장하려면 잘 제어되고 정량화 가능하며 신뢰할 수 있는 측정이 중요합니다. 또한 스크래치 테스트 를 사용하면 실제 응용 분야에서 조기에 접착/응집력 실패를 감지할 수 있습니다.

측정 목표

본 연구에서는 NANOVEA를 소개합니다. 트라이보미터 그리고 기계 테스터 산업용 코팅의 평가 및 품질 관리에 이상적입니다.

다양한 탑코트가 있는 아크릴 우레탄 바닥 페인트의 마모 과정은 나노베아 트라이보미터를 사용하여 제어 및 모니터링 방식으로 시뮬레이션됩니다. 마이크로 스크래치 테스트는 페인트의 응집력 또는 접착력 실패를 유발하는 데 필요한 하중을 측정하는 데 사용됩니다.

나노비아 T100

컴팩트 공압 트라이보미터

나노비아 PB1000

대형 플랫폼 기계 테스터

테스트 절차

이 연구에서는 내구성을 향상시키기 위해 첨가제 배합에 약간의 변화를 주면서 동일한 프라이머(베이스 코트)와 동일한 포뮬러의 다른 탑코트를 가진 시판되는 4가지 수성 아크릴 바닥 코팅제를 평가합니다. 이 네 가지 코팅은 샘플 A, B, C 및 D로 식별됩니다.

착용 테스트

NANOVEA 마찰계는 마찰계수, COF, 내마모성과 같은 마찰학적 거동을 평가하기 위해 적용되었습니다. SS440 볼 팁(직경 6mm, 등급 100)을 테스트된 페인트에 적용했습니다. COF는 현장에서 기록되었습니다. 마모율 K는 공식 K=V/(F×s)=A/(F×n)을 사용하여 평가되었으며, 여기서 V는 마모량, F는 일반 하중, s는 슬라이딩 거리, A는 마모 트랙의 단면적, n은 회전수입니다. 표면 거칠기와 마모 트랙 프로파일은 NANOVEA에 의해 평가되었습니다. 광학 프로파일로미터, 마모 트랙 형태는 광학 현미경을 사용하여 검사되었습니다.

마모 테스트 매개변수

일반 힘

20 N

속도

15m/분

테스트 기간

100, 150, 300 및 800 사이클

스크래치 테스트

마이크로 스크래치 테스터 모드를 사용하여 페인트 샘플에 대한 점진적 하중 스크래치 테스트를 수행하기 위해 로크웰 C 다이아몬드 스타일러스(반경 200μm)가 장착된 나노베아 기계식 테스터를 사용했습니다. 두 가지 최종 하중이 사용되었습니다: 프라이머로부터 페인트 박리를 조사하기 위한 최종 하중 5N과 금속 기판으로부터 프라이머 박리를 조사하기 위한 최종 하중 35N이 사용되었습니다. 결과의 재현성을 보장하기 위해 각 샘플에 대해 동일한 테스트 조건에서 세 번의 테스트를 반복했습니다.

전체 스크래치 길이의 파노라마 이미지가 자동으로 생성되고 시스템 소프트웨어에 의해 임계 고장 위치가 적용된 하중과 상호 연관되었습니다. 이 소프트웨어 기능을 통해 사용자는 스크래치 테스트 직후 현미경으로 임계 하중을 결정할 필요 없이 언제든지 스크래치 트랙에 대한 분석을 수행할 수 있습니다.

스크래치 테스트 매개변수

로드 유형프로그레시브
초기 로드0.01mN
최종 로드5 N / 35 N
로딩 속도10 / 70 N/min
스크래치 길이3mm
스크래칭 속도, dx/dt6.0mm/분
들여쓰기 기하학120º 콘
들여쓰기 재료(팁)다이아몬드
들여쓰기 팁 반경200 μm

마모 테스트 결과

마모 변화를 모니터링하기 위해 각 샘플에 대해 다양한 회전 수(100, 150, 300, 800 사이클)로 4번의 핀 온 디스크 마모 테스트를 수행했습니다. 마모 테스트를 수행하기 전에 표면 거칠기를 정량화하기 위해 나노베아 3D 비접촉 프로파일러로 샘플의 표면 형태를 측정했습니다. 모든 샘플의 표면 거칠기는 그림 1에 표시된 것처럼 약 1μm로 비슷했습니다. 그림 2와 같이 마모 테스트가 진행되는 동안 COF는 현장에서 기록되었습니다. 그림 4는 100, 150, 300, 800 사이클 후 마모 트랙의 변화를 보여주며, 그림 3은 마모 과정의 여러 단계에서 다양한 샘플의 평균 마모율을 요약한 것입니다.

 

다른 세 샘플의 COF 값이 ~0.07인 것과 비교하면, 샘플 A는 처음에 ~0.15로 훨씬 높은 COF를 보이다가 점차 증가하여 300회 마모 사이클 후 ~0.3에서 안정화됩니다. 이러한 높은 COF는 마모 과정을 가속화하고 그림 4에 표시된 바와 같이 상당한 양의 페인트 잔해를 생성합니다(샘플 A의 탑코트는 처음 100회 회전에서 제거되기 시작함). 그림 3에서 볼 수 있듯이, 샘플 A는 처음 300회 동안 ~5μm2/N의 가장 높은 마모율을 나타내며, 금속 기판의 내마모성이 향상되어 ~3.5μm2/N으로 약간 감소합니다. 샘플 C의 탑코트는 그림 4에 표시된 것처럼 150회 마모 사이클 후에 실패하기 시작하며, 이는 그림 2에서 COF의 증가로도 알 수 있습니다.

 

이에 비해 샘플 B와 샘플 D는 향상된 마찰 특성을 보여줍니다. 샘플 B는 전체 테스트 기간 동안 낮은 COF를 유지하며, COF가 ~0.05에서 ~0.1로 약간 증가합니다. 이러한 윤활 효과는 내마모성을 크게 향상시켜 800회 마모 사이클 후에도 탑코트가 여전히 밑에 있는 프라이머에 우수한 보호 기능을 제공합니다. 800 사이클에서 샘플 B의 평균 마모율은 ~0.77 μm2/N에 불과한 최저치를 기록했습니다. 샘플 D의 탑코트는 375 사이클 후에 박리되기 시작하는데, 이는 그림 2의 갑작스러운 COF 증가에 반영되어 있습니다. 샘플 D의 평균 마모율은 800 사이클에서 ~1.1 μm2/N입니다.

 

기존의 테이버 마모 측정과 비교하여 나노베아 트라이보미터는 상업용 바닥/자동차 페인트의 재현 가능한 평가 및 품질 관리를 보장하는 잘 제어되고 정량화되고 신뢰할 수 있는 마모 평가를 제공합니다. 또한, 현장 COF 측정 기능을 통해 사용자는 마모 공정의 여러 단계를 COF의 변화와 연관시킬 수 있으며, 이는 다양한 페인트 코팅의 마모 메커니즘 및 마찰 특성에 대한 근본적인 이해를 향상시키는 데 매우 중요합니다.

그림 1: 페인트 샘플의 3D 형태 및 거칠기.

그림 2: 핀 온 디스크 테스트 중 COF.

그림 3: 다양한 페인트의 마모율의 진화.

그림 4: 핀 온 디스크 테스트 중 마모 트랙의 진화.

스크래치 테스트 결과

그림 5는 샘플 A의 스크래치 길이에 따른 정상 힘, 마찰력 및 실제 깊이의 플롯을 예로 들어 보여줍니다. 옵션으로 제공되는 음향 방출 모듈을 설치하면 더 많은 정보를 얻을 수 있습니다. 정상 하중이 선형적으로 증가함에 따라 압흔 팁은 실제 깊이의 점진적인 증가에 반영되어 테스트 샘플에 점차적으로 가라 앉습니다. 마찰력 및 실제 깊이 곡선의 기울기 변화는 코팅 실패가 발생하기 시작한다는 의미 중 하나로 사용할 수 있습니다.

그림 5: 스크래치 길이의 함수로서의 정상 힘, 마찰력 및 실제 깊이 최대 하중이 5N인 샘플 A의 스크래치 테스트.

그림 6과 그림 7은 각각 최대 하중 5N과 35N으로 테스트한 네 가지 페인트 샘플 모두의 전체 스크래치를 보여줍니다. 샘플 D는 프라이머를 박리하기 위해 50N의 더 높은 하중이 필요했습니다. 5N 최종 하중에서의 스크래치 테스트(그림 6)는 상단 페인트의 응집력/접착력 실패를 평가하고, 35N에서의 테스트(그림 7)는 프라이머의 박리를 평가합니다. 현미경 사진의 화살표는 상단 코팅 또는 프라이머가 프라이머 또는 기판에서 완전히 제거되기 시작하는 지점을 나타냅니다. 이 시점의 하중을 임계 하중(Lc)이라고 하며, 표 1에 요약된 대로 페인트의 응집력 또는 접착 특성을 비교하는 데 사용됩니다.

 

페인트 박리 시 4.04N, 프라이머 박리 시 36.61N의 가장 높은 Lc 값을 나타내는 페인트 샘플 D가 계면 접착력이 가장 우수하다는 것이 분명합니다. 샘플 B는 두 번째로 우수한 스크래치 저항성을 보여줍니다. 스크래치 분석 결과, 페인트 포뮬러의 최적화가 아크릴 바닥 페인트의 기계적 거동, 더 구체적으로는 스크래치 저항성과 접착 특성에 매우 중요하다는 것을 알 수 있습니다.

표 1: 임계 부하 요약.

그림 6: 최대 하중 5N의 전체 스크래치 현미경 사진.

그림 7: 최대 하중 35N의 전체 스크래치 현미경 사진.

결론

기존의 테이버 마모 측정과 비교했을 때, 나노베아 메카니컬 테스터와 트라이보미터는 상업용 바닥 및 자동차 코팅의 평가 및 품질 관리를 위한 탁월한 도구입니다. 스크래치 모드의 나노베아 메카니컬 테스터는 코팅 시스템의 접착/응집력 문제를 감지할 수 있습니다. 나노베아 트라이보미터는 페인트의 내마모성 및 마찰 계수에 대해 잘 제어되고 정량화 및 반복 가능한 마찰학적 분석을 제공합니다.

 

이 연구에서 테스트한 수성 아크릴 바닥 코팅에 대한 종합적인 마찰 및 기계적 분석에 따르면, 샘플 B가 가장 낮은 COF 및 마모율과 두 번째로 우수한 스크래치 저항성을 보였으며, 샘플 D는 가장 우수한 스크래치 저항성과 두 번째로 우수한 내마모성을 나타냈습니다. 이 평가를 통해 다양한 적용 환경의 요구 사항에 맞는 최적의 후보를 평가하고 선택할 수 있습니다.

 

나노베아 기계식 시험기의 나노 및 마이크로 모듈은 모두 ISO 및 ASTM을 준수하는 압흔, 스크래치 및 마모 시험기 모드를 포함하고 있어 단일 모듈에서 페인트 평가에 사용할 수 있는 가장 광범위한 테스트를 제공합니다. 나노베아 트라이보미터는 ISO 및 ASTM을 준수하는 회전 및 선형 모드를 사용하여 정밀하고 반복 가능한 마모 및 마찰 테스트를 제공하며, 하나의 사전 통합된 시스템에서 고온 마모, 윤활 및 트리보 부식 모듈을 옵션으로 사용할 수 있습니다. 나노베아의 탁월한 제품군은 경도, 영 계수, 파괴 인성, 접착력, 내마모성 등 얇거나 두꺼운, 연질 또는 경질 코팅, 필름 및 기판의 모든 기계적/ 마찰학적 특성을 측정하는 데 이상적인 솔루션입니다. 옵션으로 제공되는 나노베아 비접촉식 광학 프로파일러는 거칠기와 같은 기타 표면 측정 외에도 스크래치 및 마모 트랙의 고해상도 3D 이미징을 위해 사용할 수 있습니다.

이제 애플리케이션에 대해 이야기해 보겠습니다.

기계식 테스터를 사용한 스크래치 경도 측정

스크래치 경도 측정

기계식 테스터 사용

작성자

DUANJIE LI, PhD

소개

일반적으로 경도 테스트는 영구적 또는 소성 변형에 대한 재료의 저항력을 측정합니다. 경도 측정에는 스크래치 경도, 압입 경도, 반발 경도의 세 가지 유형이 있습니다. 스크래치 경도 테스트는 날카로운 물체와의 마찰로 인한 스크래치 및 마모에 대한 재료의 저항성을 측정합니다1. 1820년 독일의 광물학자 프리드리히 모스가 처음 개발했으며, 광물의 물리적 특성을 평가하는 데 여전히 널리 사용되고 있습니다2. 이 테스트 방법은 금속, 세라믹, 폴리머 및 코팅된 표면에도 적용할 수 있습니다.

스크래치 경도를 측정하는 동안 지정된 형상의 다이아몬드 스타일러스가 일정한 속도로 일정한 정상 힘을 가하여 선형 경로를 따라 재료 표면에 스크래치를 냅니다. 스크래치의 평균 너비가 측정되어 스크래치 경도 수치(HSP)를 계산하는 데 사용됩니다. 이 기술은 다양한 재료의 경도를 측정할 수 있는 간단한 솔루션을 제공합니다.

측정 목표

이 연구에서는 ASTM G171-03에 따라 다양한 금속의 스크래치 경도를 측정하기 위해 나노베아 PB1000 기계식 시험기를 사용했습니다.

동시에, 이 연구는 NANOVEA의 역량을 보여줍니다. 기계 테스터 높은 정밀도와 재현성으로 스크래치 경도 측정을 수행합니다.

나노비아

PB1000

테스트 조건

나노베아 PB1000 기계식 시험기는 세 가지 연마 금속(Cu110, Al6061, SS304)에 대한 스크래치 경도 테스트를 수행했습니다. 정점 각도 120°, 팁 반경 200 µm의 원추형 다이아몬드 스타일러스를 사용했습니다. 각 샘플은 결과의 재현성을 보장하기 위해 동일한 테스트 매개변수로 세 번 스크래치했습니다. 테스트 매개변수는 아래에 요약되어 있습니다. 10mN의 낮은 정상 하중에서 프로파일 스캔을 전후에 수행했습니다. 스크래치 테스트 를 눌러 스크래치 표면 프로파일의 변화를 측정합니다.

테스트 매개변수

일반 힘

10 N

온도

24°C(RT)

슬라이딩 속도

20mm/min

슬라이딩 거리

10 mm

대기권

Air

결과 및 토론

서로 다른 재료의 스크래치 경도를 비교하기 위해 테스트 후 세 가지 금속(Cu110, Al6061, SS304)의 스크래치 트랙 이미지가 그림 1에 나와 있습니다. 나노베아 기계 소프트웨어의 매핑 기능을 사용하여 자동화된 프로토콜에서 동일한 조건으로 테스트한 세 개의 평행 스크래치를 생성했습니다. 측정된 스크래치 트랙 폭과 계산된 스크래치 경도 수치(HSP)는 표 1에 요약 및 비교되어 있습니다. 금속의 마모 트랙 폭은 각각 174, 220 및 89 µm로 Al6061, Cu110 및 SS304에 대해 서로 다르며, 그 결과 계산된 HSP는 0.84, 0.52 및 3.2 GPa로 나타났습니다.

스크래치 트랙 폭에서 계산된 스크래치 경도 외에도 스크래치 경도 테스트 중에 마찰 계수(COF), 실제 깊이 및 음향 방출의 변화가 현장에서 기록되었습니다. 여기서 실제 깊이는 스크래치 테스트 중 스타일러스의 침투 깊이와 사전 스캔에서 측정된 표면 프로파일 사이의 깊이 차이입니다. Cu110의 COF, 실제 깊이 및 음향 방출은 그림 2에 예시로 나와 있습니다. 이러한 정보는 스크래치 중에 발생하는 기계적 결함에 대한 통찰력을 제공하여 사용자가 기계적 결함을 감지하고 테스트된 재료의 스크래치 거동을 추가로 조사할 수 있도록 합니다.

스크래치 경도 테스트는 높은 정밀도와 반복성으로 몇 분 안에 완료할 수 있습니다. 이 연구의 스크래치 경도 테스트는 기존의 압입 공정과 비교하여 경도 측정을 위한 대체 솔루션을 제공하여 품질 관리 및 신소재 개발에 유용합니다.

Al6061

Cu110

SS304

그림 1: 테스트 후 스크래치 트랙의 현미경 이미지(100배 확대).

 스크래치 트랙 너비(μm)HSp (GPa)
Al6061174±110.84
Cu110220±10.52
SS30489±53.20

표 1: 스크래치 트랙 너비 및 스크래치 경도 수 요약.

그림 2: Cu110에 대한 스크래치 경도 테스트 중 마찰 계수, 실제 깊이 및 음향 방출의 변화.

결론

이 연구에서는 ASTM G171-03에 따라 스크래치 경도 테스트를 수행하는 나노베아 기계식 테스터의 성능을 보여주었습니다. 코팅 접착력 및 스크래치 저항성 외에도 일정한 하중에서의 스크래치 테스트는 재료의 경도를 비교할 수 있는 간단한 대체 솔루션을 제공합니다. 기존의 스크래치 경도 시험기와 달리, 나노베아 기계식 시험기는 마찰 계수, 음향 방출 및 실제 현장 깊이의 변화를 모니터링하기 위한 옵션 모듈을 제공합니다.

나노베아 기계식 테스터의 나노 및 마이크로 모듈에는 ISO 및 ASTM을 준수하는 압입, 스크래치 및 마모 테스터 모드가 포함되어 있어 단일 시스템에서 가장 광범위하고 사용자 친화적인 테스트 범위를 제공합니다. NANOVEA의 탁월한 범위는 경도, 영 계수, 파괴 인성, 접착력, 내마모성 등 얇거나 두꺼운, 연질 또는 경질 코팅, 필름 및 기판의 모든 기계적 특성을 측정하는 데 이상적인 솔루션입니다.

이제 애플리케이션에 대해 이야기해 보겠습니다.

질화 티타늄 코팅 스크래치 테스트

질화 티타늄 코팅 스크래치 테스트

품질 관리 검사

작성자

DUANJIE LI, PhD

소개

높은 경도, 우수한 내마모성, 내식성 및 불활성의 조합으로 인해 질화 티타늄(TiN)은 다양한 산업 분야의 금속 부품에 이상적인 보호 코팅입니다. 예를 들어 TiN 코팅의 모서리 유지력과 내식성은 면도날, 금속 절단기, 사출 금형 및 톱과 같은 공작 기계의 작업 효율을 크게 높이고 수명을 연장할 수 있습니다. 높은 경도, 불활성 및 무독성 덕분에 TiN은 임플란트 및 수술 기구를 포함한 의료 기기에 적용하기에 매우 적합합니다.

TiN 코팅 스크래치 테스트의 중요성

보호용 PVD/CVD 코팅의 잔류 응력은 코팅된 부품의 성능과 기계적 무결성에 중요한 역할을 합니다. 잔류 응력은 성장 응력, 열 구배, 기하학적 제약, 서비스 응력¹ 등 몇 가지 주요 원인에서 비롯됩니다. 고온에서 코팅 증착 시 발생하는 코팅과 기판 사이의 열팽창 불일치는 높은 열 잔류 응력을 유발합니다. 또한 TiN 코팅 공구는 드릴 비트 및 베어링과 같이 매우 높은 응력이 집중된 환경에서 사용되는 경우가 많습니다. 따라서 보호 기능성 코팅의 응집력과 접착력을 정량적으로 검사할 수 있는 신뢰할 수 있는 품질 관리 프로세스를 개발하는 것이 매우 중요합니다.

[1] V. 테이세이라, 진공 64 (2002) 393-399.

측정 목표

본 연구에서는 NANOVEA를 소개합니다. 기계 테스터 스크래치 모드는 제어된 정량적 방식으로 보호용 TiN 코팅의 응집력/접착력을 평가하는 데 이상적입니다.

나노비아

PB1000

테스트 조건

나노베아 PB1000 기계식 테스터는 코팅을 수행하는 데 사용되었습니다. 스크래치 테스트 를 아래에 요약된 것과 동일한 테스트 매개변수를 사용하여 세 가지 TiN 코팅에 적용했습니다:

로딩 모드: 프로그레시브 리니어

초기 로드

0.02 N

최종 로드

10 N

로딩 속도

20 N/min

스크래치 길이

5mm

들여쓰기 유형

구형-원뿔형

다이아몬드, 반경 20μm

결과 및 토론

그림 1은 테스트 중 침투 깊이, 마찰 계수(COF) 및 음향 방출의 기록된 변화를 보여줍니다. TiN 샘플의 전체 마이크로 스크래치 트랙은 그림 2에 나와 있습니다. 다양한 임계 하중에서의 고장 거동은 그림 3에 표시되어 있으며, 임계 하중 Lc1은 스크래치 트랙에서 응집 균열의 첫 징후가 발생하는 하중으로 정의되고, Lc2는 반복적인 박리 고장이 발생하는 하중으로, Lc3은 코팅이 기판에서 완전히 제거되는 하중으로 정의됩니다. TiN 코팅의 임계 하중(Lc) 값은 그림 4에 요약되어 있습니다.

침투 깊이, COF 및 음향 방출의 변화는 이 연구에서 임계 하중으로 대표되는 여러 단계에서의 코팅 실패 메커니즘에 대한 통찰력을 제공합니다. 스크래치 테스트 중에 샘플 A와 샘플 B가 비슷한 거동을 보이는 것을 관찰할 수 있습니다. 코팅 스크래치 테스트 초기에 일반 하중이 선형적으로 증가함에 따라 스타일러스가 샘플에 ~0.06mm 깊이까지 점진적으로 침투하고 COF는 ~0.3까지 점차 증가합니다. 3.3N의 Lc1에 도달하면 칩핑 실패의 첫 번째 징후가 발생합니다. 이는 침투 깊이, COF 및 음향 방출 플롯의 첫 번째 큰 스파이크에도 반영됩니다. 하중이 ~3.8N의 Lc2까지 계속 증가함에 따라 침투 깊이, COF 및 음향 방출의 추가 변동이 발생합니다. 스크래치 트랙의 양쪽에서 지속적인 박리 실패를 관찰할 수 있습니다. Lc3에서는 스타일러스가 가하는 높은 압력으로 인해 코팅이 금속 기판에서 완전히 박리되어 기판이 노출되고 보호되지 않은 상태로 남게 됩니다.

이에 비해 샘플 C는 코팅 스크래치 테스트의 여러 단계에서 더 낮은 임계 하중을 나타내며, 이는 코팅 스크래치 테스트 중 침투 깊이, 마찰 계수(COF) 및 음향 방출의 변화에도 반영됩니다. 샘플 C는 샘플 A 및 샘플 B에 비해 상단 TiN 코팅과 금속 기판 사이의 계면에서 경도가 낮고 응력이 높은 접착 중간층을 가지고 있습니다.

이 연구는 코팅 시스템의 품질에 있어 적절한 기판 지지대와 코팅 아키텍처가 얼마나 중요한지 보여줍니다. 중간층이 강할수록 높은 외부 하중과 집중 응력 하에서 변형에 더 잘 견딜 수 있으므로 코팅/기판 시스템의 응집력 및 접착 강도가 향상됩니다.

그림 1: TiN 샘플의 투과 깊이, COF 및 음향 방출의 진화.

그림 2: 테스트 후 TiN 코팅의 전체 스크래치 트랙.

그림 3: 다양한 임계 하중 하에서 TiN 코팅 실패, Lc.

그림 4: TiN 코팅의 임계 하중(Lc) 값 요약.

결론

이 연구에서는 나노베아 PB1000 기계식 테스터가 제어되고 면밀히 모니터링되는 방식으로 TiN 코팅 샘플에 대해 신뢰할 수 있고 정확한 스크래치 테스트를 수행한다는 것을 보여주었습니다. 스크래치 측정을 통해 사용자는 일반적인 응집력 및 접착 코팅 실패가 발생하는 임계 하중을 신속하게 식별할 수 있습니다. 키사이트의 기기는 코팅의 내재적 품질과 코팅/기판 시스템의 계면 무결성을 정량적으로 검사하고 비교할 수 있는 우수한 품질 관리 도구입니다. 적절한 중간층을 가진 코팅은 높은 외부 하중과 집중 응력 하에서 큰 변형을 견딜 수 있고 코팅/기판 시스템의 응집력과 접착력을 향상시킬 수 있습니다.

나노베아 기계식 테스터의 나노 및 마이크로 모듈은 모두 ISO 및 ASTM을 준수하는 압입, 스크래치 및 마모 테스터 모드를 포함하여 단일 시스템에서 사용할 수 있는 가장 광범위하고 사용자 친화적인 범위의 테스트를 제공합니다. NANOVEA의 탁월한 범위는 경도, 영 계수, 파괴 인성, 접착력, 내마모성 등을 포함하여 얇거나 두꺼운, 연질 또는 경질 코팅, 필름 및 기판의 모든 기계적 특성을 측정하는 데 이상적인 솔루션입니다.

이제 애플리케이션에 대해 이야기해 보겠습니다.

3D 프로파일 측정을 이용한 프랙토그래피 분석

프랙토그래피 분석

3D 프로파일 측정 사용

작성자

크레이그 레싱

소개

파면분석(Fractography)은 파손된 표면의 특징을 연구하는 것으로 역사적으로 현미경이나 SEM을 통해 조사되어 왔습니다. 피처의 크기에 따라 표면 분석을 위해 현미경(매크로 피처) 또는 SEM(나노 및 마이크로 피처)이 선택됩니다. 두 가지 모두 궁극적으로 파손 메커니즘 유형을 식별할 수 있습니다. 비록 효과적이긴 하지만 현미경은 명확한 한계를 가지고 있으며 원자 수준 분석을 제외한 대부분의 경우 SEM은 파손 표면 측정에 실용적이지 않으며 광범위한 사용 기능이 부족합니다. 광학 측정 기술의 발전으로 NANOVEA는 3D 비접촉 프로파일로미터 이제 거시적 규모의 2D 및 3D 표면 측정을 통해 나노를 제공할 수 있는 능력을 갖춘 최고의 장비로 간주됩니다.

골절 검사를 위한 3D 비접촉식 프로파일로미터의 중요성

3D 비접촉 프로파일로미터는 SEM과 달리 최소한의 시료 준비만으로 거의 모든 표면과 시료 크기를 측정할 수 있으며, 수직/수평 치수도 SEM보다 우수합니다. 프로파일러를 사용하면 시료 반사율의 영향을 받지 않고 나노부터 매크로 범위의 특징을 한 번의 측정으로 캡처할 수 있습니다. 투명, 불투명, 반사, 확산, 광택, 거칠기 등 모든 재료를 쉽게 측정할 수 있습니다. 3D 비접촉 프로파일로미터는 광범위하고 사용자 친화적인 기능을 제공하여 SEM 비용의 일부로 표면 파괴 연구를 극대화할 수 있습니다.

측정 목표

이 애플리케이션에서 나노베아 ST400은 강철 샘플의 파쇄 표면을 측정하는 데 사용됩니다. 이 연구에서는 표면의 3D 영역, 2D 프로파일 추출 및 표면 방향 맵을 소개합니다.

나노비아

ST400

결과

상단 표면

3D 표면 텍스처 방향

등방성51.26%
첫 번째 방향123.2º
두 번째 방향116.3º
세 번째 방향0.1725º

이 추출을 통해 표면적, 부피, 거칠기 등을 자동으로 계산할 수 있습니다.

2D 프로파일 추출

결과

측면 표면

3D 표면 텍스처 방향

등방성15.55%
첫 번째 방향0.1617º
두 번째 방향110.5º
세 번째 방향171.5º

이 추출을 통해 표면적, 부피, 거칠기 등을 자동으로 계산할 수 있습니다.

2D 프로파일 추출

결론

이 애플리케이션에서는 나노베아 ST400 3D 비접촉식 프로파일로미터가 어떻게 파손된 표면의 전체 형상(나노, 마이크로 및 매크로 특징)을 정밀하게 특성화할 수 있는지 보여주었습니다. 3D 영역에서 표면을 명확하게 식별하고 무한한 표면 계산 목록으로 하위 영역 또는 프로파일/단면을 빠르게 추출하고 분석할 수 있습니다. 통합된 AFM 모듈로 나노미터 이하의 표면 특징을 추가로 분석할 수 있습니다.

또한, 나노베아는 파단 표면을 움직일 수 없는 현장 연구에 특히 중요한 휴대용 버전을 프로파일로미터 라인업에 포함시켰습니다. 이처럼 광범위한 표면 측정 기능을 갖춘 단일 장비로 파단 표면 분석이 그 어느 때보다 쉽고 편리해졌습니다.

이제 애플리케이션에 대해 이야기해 보겠습니다.

3D 프로파일 측정을 사용한 유리 섬유 표면 형상

유리 섬유 표면 지형

3D 프로파일 측정 사용

작성자

크레이그 레싱

소개

유리섬유는 매우 미세한 유리 섬유로 만든 소재입니다. 많은 폴리머 제품의 강화제로 사용되며, 섬유 강화 폴리머(FRP) 또는 유리 강화 플라스틱(GRP)으로 제대로 알려진 복합 소재를 일반적으로 "유리 섬유"라고 부릅니다.

품질 관리를 위한 표면 계측 검사의 중요성

유리섬유 보강재의 용도는 다양하지만, 대부분의 응용 분야에서는 가능한 한 강도가 높은 것이 중요합니다. 유리섬유 복합재는 무게 대비 강도가 가장 높은 소재 중 하나이며, 경우에 따라서는 파운드당 강도가 강철보다 더 강한 경우도 있습니다. 높은 강도 외에도 노출된 표면적을 최대한 작게 만드는 것도 중요합니다. 유리 섬유 표면이 넓으면 구조물이 화학적 공격에 더 취약해지고 재료가 팽창할 수 있습니다. 따라서 표면 검사는 품질 관리 생산에 매우 중요합니다.

측정 목표

이 애플리케이션에서 NANOVEA ST400은 유리섬유 복합재 표면의 거칠기 및 평탄도를 측정하는 데 사용됩니다. 이러한 표면 특징을 정량화함으로써 더 강하고 오래 지속되는 유리섬유 복합 재료를 만들거나 최적화할 수 있습니다.

나노비아

ST400

측정 매개변수

프로브 1 mm
획득률300Hz
평균화1
측정된 표면5mm x 2mm
스텝 크기5 µm x 5 µm
스캔 모드일정한 속도

프로브 사양

측정 범위1 mm
Z 해상도 25nm
Z 정확도200nm
측면 해상도 2 μm

결과

거짓 색상 보기

3D 표면 평탄도

3D 표면 거칠기

Sa15.716 μm산술 평균 높이
Sq19.905 μm평균 제곱근 높이
Sp116.74 μm최대 피크 높이
Sv136.09 μm최대 피트 높이
Sz252.83 μm최대 높이
Ssk0.556기울기
Ssu3.654첨도

결론

결과에서 볼 수 있듯이 NANOVEA ST400 Optical은 프로파일러 유리섬유 복합재 표면의 거칠기와 평탄도를 정확하게 측정할 수 있었습니다. 여러 배치의 섬유 복합재 및/또는 특정 기간에 걸쳐 데이터를 측정하여 다양한 유리 섬유 제조 공정과 시간 경과에 따른 반응에 대한 중요한 정보를 제공할 수 있습니다. 따라서 ST400은 유리섬유 복합재료의 품질 관리 프로세스를 강화하기 위한 실행 가능한 옵션입니다.

이제 애플리케이션에 대해 이야기해 보겠습니다.

트라이보미터를 사용한 폴리머 벨트 마모 및 마찰

폴리머 벨트

트라이보미터를 사용한 마모 및 마찰

작성자

DUANJIE LI, PhD

소개

벨트 드라이브는 동력을 전달하고 둘 이상의 회전축 사이의 상대적인 움직임을 추적합니다. 벨트 드라이브는 최소한의 유지보수로 간단하고 경제적인 솔루션으로 벅쏘, 제재소, 탈곡기, 사일로 블로어, 컨베이어 등 다양한 분야에 널리 사용됩니다. 벨트 드라이브는 과부하로부터 기계를 보호할 뿐만 아니라 습기를 차단하고 진동을 차단할 수 있습니다.

마모 평가의 중요성 벨트 드라이브의 경우

벨트 구동 기계의 벨트는 마찰과 마모가 불가피합니다. 충분한 마찰은 미끄러짐 없이 효과적인 동력 전달을 보장하지만 과도한 마찰은 벨트를 빠르게 마모시킬 수 있습니다. 벨트 구동 작동 중에는 피로, 마모, 마찰 등 다양한 유형의 마모가 발생합니다. 벨트의 수명을 연장하고 벨트 수리 및 교체에 드는 비용과 시간을 절감하기 위해서는 벨트의 마모 성능을 신뢰성 있게 평가하여 벨트의 수명, 생산 효율성 및 응용 분야 성능을 개선하는 것이 바람직합니다. 벨트의 마찰 계수 및 마모율을 정확하게 측정하면 벨트 생산의 R&D 및 품질 관리가 용이해집니다.

측정 목표

이 연구에서는 다양한 표면 질감을 가진 벨트의 마모 거동을 시뮬레이션하여 비교했습니다. 나노비아 T2000 트라이보미터는 벨트의 마모 과정을 제어 및 모니터링하는 방식으로 시뮬레이션합니다.

나노비아

T2000

테스트 절차

표면 거칠기와 질감이 다른 두 벨트의 마찰 계수, COF 및 내마모성을 다음과 같이 평가했습니다. 나노비아 고부하 트라이보미터 선형 왕복 마모 모듈을 사용합니다. Steel 440 볼(직경 10mm)을 카운터 재료로 사용했습니다. 통합된 측정기를 사용하여 표면 거칠기와 마모 트랙을 검사했습니다. 3D 비접촉 프로파일로미터. 마모율, K는 다음 공식을 사용하여 평가되었습니다. K=Vl(Fxs)여기서 V 는 착용한 볼륨입니다, F 는 정상 부하이고 s 는 슬라이딩 거리입니다.

 

이 연구에서는 매끄러운 스틸 440 볼을 예로 사용했으며, 실제 적용 상황을 시뮬레이션하기 위해 맞춤형 픽스처를 사용하여 모양과 표면 마감이 다른 모든 고체 소재를 적용할 수 있습니다.

결과 및 토론

텍스처 벨트 및 스무스 벨트의 표면 거칠기 Ra는 각각 33.5 및 8.7 um이며, 분석된 표면 프로파일에 따르면 나노비아 3D 비접촉식 광학 프로파일러. 서로 다른 하중에서 벨트의 마모 거동을 비교하기 위해 테스트한 두 벨트의 COF와 마모율을 각각 10N과 100N에서 측정했습니다.

그림 1 은 마모 테스트 중 벨트의 COF 변화를 보여줍니다. 텍스처가 다른 벨트는 상당히 다른 마모 거동을 보입니다. 흥미로운 점은 COF가 점진적으로 증가하는 런인 기간이 지나면 텍스처 벨트는 10N 및 100N의 하중을 사용하여 수행한 두 테스트 모두에서 ~0.5의 낮은 COF에 도달한다는 것입니다. 이에 비해 10N의 하중으로 테스트한 스무스 벨트는 COF가 안정될 때 ~1.4의 상당히 높은 COF를 나타내며 나머지 테스트 동안 이 값 이상을 유지한다는 것입니다. 100N의 하중을 가하여 테스트한 스무스 벨트는 강철 440 볼에 의해 빠르게 마모되어 큰 마모 트랙을 형성했습니다. 따라서 테스트는 220 회전에서 중단되었습니다.

그림 1: 다양한 하중에서 벨트의 COF의 진화.

그림 2는 100N에서 테스트 후 3D 마모 트랙 이미지를 비교한 것입니다. 나노베아 3D 비접촉식 프로파일로미터는 마모 트랙의 상세한 형태를 분석할 수 있는 도구를 제공하여 마모 메커니즘에 대한 근본적인 이해에 더 많은 통찰력을 제공합니다.

표 1: 마모 트랙 분석 결과.

그림 2:  두 벨트의 3D 보기
100N에서 테스트한 후

3D 마모 트랙 프로파일을 사용하면 표 1과 같이 고급 분석 소프트웨어에서 계산한 마모 트랙 부피를 직접 정확하게 측정할 수 있습니다. 220회전 마모 테스트에서 스무스 벨트는 600회전 마모 테스트 후 텍스처드 벨트의 마모 부피가 14.0mm3인 것에 비해 75.7mm3의 부피로 훨씬 더 크고 깊은 마모 트랙을 가집니다. 스틸 볼에 대한 스무스 벨트의 마찰이 훨씬 더 높기 때문에 텍스쳐드 벨트에 비해 마모율이 15배 더 높습니다.

 

텍스처 벨트와 스무스 벨트 사이의 이러한 급격한 COF 차이는 벨트와 스틸 볼 사이의 접촉 면적 크기와 관련이 있을 수 있으며, 이는 또한 다른 마모 성능으로 이어집니다. 그림 3은 광학 현미경으로 두 벨트의 마모 트랙을 보여줍니다. 마모 트랙 검사는 COF 진화에 대한 관찰과 일치합니다: 0.5의 낮은 COF를 유지하는 텍스처드 벨트는 10N의 하중에서 마모 테스트 후 마모 징후가 나타나지 않습니다. 스무스 벨트는 10N에서 작은 마모 트랙을 보여줍니다. 100N에서 수행한 마모 테스트는 텍스처드 벨트와 스무스 벨트 모두에서 상당히 큰 마모 트랙을 생성하며 다음 단락에서 설명하는 대로 3D 프로파일을 사용하여 마모율을 계산합니다.

그림 3:  광학 현미경으로 트랙을 착용합니다.

결론

이 연구에서는 벨트의 마찰 계수와 마모율을 잘 제어되고 정량적인 방식으로 평가할 수 있는 나노베아 T2000 트라이보미터의 성능을 보여주었습니다. 표면 텍스처는 벨트의 서비스 성능 중 마찰 및 내마모성에 중요한 역할을 합니다. 텍스처가 있는 벨트는 마찰 계수가 0.5 정도로 안정적이며 수명이 길기 때문에 공구 수리 또는 교체에 드는 시간과 비용을 절감할 수 있습니다. 이에 비해 매끄러운 벨트와 스틸 볼의 과도한 마찰은 벨트를 빠르게 마모시킵니다. 또한 벨트에 가해지는 하중은 벨트의 수명을 결정짓는 중요한 요소입니다. 과부하는 매우 높은 마찰을 발생시켜 벨트의 마모를 가속화합니다.

나노베아 T2000 트라이보미터는 ISO 및 ASTM을 준수하는 회전 및 선형 모드를 사용하여 정밀하고 반복 가능한 마모 및 마찰 테스트를 제공하며, 고온 마모, 윤활 및 마찰 부식 모듈을 하나의 사전 통합된 시스템에서 옵션으로 사용할 수 있습니다. 나노베아의 타의 추종을 불허하는 범위는 얇거나 두꺼운, 연질 또는 경질 코팅, 필름 및 기판의 전체 범위의 마찰 특성을 측정하는 데 이상적인 솔루션입니다.

이제 애플리케이션에 대해 이야기해 보겠습니다.

3D 프로파일 측정을 이용한 화석 미세 구조 분석

화석 미세 구조

3D 프로파일 측정 사용

작성자

DUANJIE LI, PhD

소개

화석은 고대 바다, 호수, 강 아래의 퇴적물에 묻혀 있던 식물, 동물, 기타 생물의 흔적이 보존된 유물입니다. 부드러운 신체 조직은 보통 사후에 부패하지만 딱딱한 껍질, 뼈, 치아는 화석화됩니다. 원래 껍질과 뼈의 광물 교체가 일어날 때 미세 구조 표면의 특징이 보존되는 경우가 많으며, 이를 통해 날씨의 진화와 화석의 형성 메커니즘에 대한 통찰력을 얻을 수 있습니다.

화석 검사를 위한 3D 비접촉식 프로파일로미터의 중요성

화석의 3D 프로파일을 통해 화석 샘플의 상세한 표면 특징을 더 가까운 각도에서 관찰할 수 있습니다. NANOVEA 프로파일로미터의 높은 해상도와 정확도는 육안으로는 식별할 수 없습니다. 프로파일로미터의 분석 소프트웨어는 이러한 고유한 표면에 적용할 수 있는 광범위한 연구를 제공합니다. NANOVEA는 터치 프로브와 같은 다른 기술과 달리 3D 비접촉 프로파일로미터 샘플을 건드리지 않고 표면 특징을 측정합니다. 이를 통해 특정 섬세한 화석 샘플의 실제 표면 특징을 보존할 수 있습니다. 또한 휴대용 모델인 Jr25 프로파일로미터를 사용하면 화석 현장에서 3D 측정이 가능하므로 발굴 후 화석 분석 및 보호가 상당히 용이해집니다.

측정 목표

이 연구에서는 두 개의 대표적인 화석 샘플의 표면을 측정하기 위해 나노베아 Jr25 프로파일로미터를 사용했습니다. 각 화석의 전체 표면을 스캔하고 분석하여 거칠기, 윤곽, 텍스처 방향 등 표면의 특징을 파악했습니다.

나노비아

Jr25

브라키오포드 화석

이 보고서에서 소개하는 첫 번째 화석 샘플은 브라키오포드 화석으로, 위아래 표면에 딱딱한 '밸브'(껍질)가 있는 해양 동물에서 나온 화석입니다. 브라키오패드는 5억 5천만 년 전인 캄브리아기에 처음 등장했습니다.

스캔의 3D 보기는 그림 1에 표시되어 있고 가색 보기는 그림 2에 표시되어 있습니다. 

그림 1: 브라키오포드 화석 샘플의 3D 보기.

그림 2: 브라키오포드 화석 샘플의 가색 보기.

그런 다음 그림 3과 같이 브라키오포드 화석의 국부적인 표면 형태와 윤곽을 조사하기 위해 표면에서 전체적인 형태를 제거했습니다. 이제 브라키오포드 화석 샘플에서 특이한 발산 홈 텍스처를 관찰할 수 있습니다.

그림 3: 양식 제거 후 가색 보기 및 윤곽선 보기.

텍스처 영역에서 선 프로파일을 추출하여 화석 표면의 단면도를 그림 4에 표시합니다. 단차 높이 연구는 표면 특징의 정확한 치수를 측정합니다. 홈의 평균 폭은 ~0.38mm, 깊이는 ~0.25mm입니다.

그림 4: 텍스처링된 표면의 선 프로파일 및 스텝 높이 연구.

크리노이드 줄기 화석

두 번째 화석 샘플은 크리노이드 줄기 화석입니다. 크리노이드는 공룡보다 약 3억 년 전인 캄브리아기 중기 바다에 처음 등장했습니다. 

 

스캔의 3D 보기는 그림 5에 표시되어 있고 가색 보기는 그림 6에 표시되어 있습니다. 

그림 5: 크리노이드 화석 샘플의 3D 보기.

크리노이드 줄기 화석의 표면 질감 등방성 및 거칠기는 그림 7에서 분석됩니다. 

 이 화석은 90°에 가까운 각도에서 텍스처 방향이 선호되어 69%의 텍스처 등방성을 갖습니다.

그림 6: 의 가색 보기 크리노이드 줄기 샘플.

 

그림 7: 크리노이드 줄기 화석의 표면 텍스처 등방성 및 거칠기.

크리노이드 줄기 화석의 축 방향을 따른 2D 프로파일은 그림 8에 나와 있습니다. 

표면 텍스처의 피크 크기는 상당히 균일합니다.

그림 8: 크리노이드 줄기 화석의 2D 프로파일 분석.

결론

이 애플리케이션에서는 휴대용 비접촉식 프로파일로미터인 NANOVEA Jr25를 사용하여 브라키오포드 및 크리노이드 줄기 화석의 3D 표면 특징을 종합적으로 연구했습니다. 이 기기가 화석 샘플의 3D 형태를 정밀하게 특성화할 수 있음을 보여주었습니다. 그런 다음 샘플의 흥미로운 표면 특징과 질감을 추가로 분석합니다. 브라키오포드 샘플은 다양한 홈 텍스처를 가지고 있는 반면, 크리노이드 줄기 화석은 우선적인 텍스처 등방성을 보여줍니다. 상세하고 정밀한 3D 표면 스캔은 고생물학자와 지질학자가 생명의 진화와 화석의 형성을 연구하는 데 이상적인 도구로 입증되었습니다.

여기에 표시된 데이터는 분석 소프트웨어에서 사용할 수 있는 계산의 일부만을 나타냅니다. 나노베아 프로파일로미터는 반도체, 마이크로일렉트로닉스, 태양광, 광섬유, 자동차, 항공우주, 야금, 기계 가공, 코팅, 제약, 생의학, 환경 등 다양한 분야의 거의 모든 표면을 측정합니다.

이제 애플리케이션에 대해 이야기해 보겠습니다.

트라이보미터를 사용한 샌드페이퍼 마모 성능

사포 마모 성능

트라이보미터 사용

작성자

DUANJIE LI, PhD

소개

사포는 종이나 천의 한 면에 연마 입자를 붙인 것으로 구성됩니다. 입자에는 가닛, 탄화규소, 산화알루미늄, 다이아몬드 등 다양한 연마재를 사용할 수 있습니다. 사포는 목재, 금속 및 건식 벽체에 특정 표면 마감을 만들기 위해 다양한 산업 분야에서 널리 적용됩니다. 사포는 손이나 전동 공구로 고압의 압력을 가하여 작업하는 경우가 많습니다.

사포 마모 성능 평가의 중요성

사포의 효과는 다양한 조건에서의 연마 성능에 따라 결정되는 경우가 많습니다. 사포에 포함된 연마 입자의 크기인 입자 크기에 따라 사포의 마모 속도와 연마되는 소재의 스크래치 크기가 결정됩니다. 입자 수가 높은 사포는 입자가 작기 때문에 샌딩 속도가 느리고 표면 마감이 더 미세합니다. 입자 수가 같지만 다른 재질로 만들어진 사포는 건조하거나 습한 조건에서 서로 다른 거동을 보일 수 있습니다. 제조된 사포가 의도한 연마 거동을 갖도록 하려면 신뢰할 수 있는 마찰 평가가 필요합니다. 이러한 평가를 통해 사용자는 다양한 유형의 사포의 마모 거동을 통제되고 모니터링된 방식으로 정량적으로 비교하여 대상 용도에 가장 적합한 후보를 선택할 수 있습니다.

측정 목표

이 연구에서는 건식 및 습식 조건에서 다양한 사포 샘플의 마모 성능을 정량적으로 평가할 수 있는 나노베아 트라이보미터의 기능을 소개합니다.

나노비아

T2000

테스트 절차

NANOVEA T100 Tribometer를 사용하여 두 종류의 사포의 마찰계수(COF)와 마모 성능을 평가했습니다. 카운터 재료로는 440 스테인리스 스틸 볼을 사용했습니다. NANOVEA를 사용하여 각 마모 테스트 후에 볼 마모 흉터를 검사했습니다. 3D 비접촉식 광학 프로파일러 정확한 볼륨 손실 측정을 보장합니다.

비교 연구를 위해 440 스테인리스 스틸 볼을 카운터 재료로 선택했지만, 다른 적용 조건을 시뮬레이션하기 위해 다른 고체 재료로 대체할 수 있습니다.

테스트 결과 및 토론

그림 1은 건조하고 습한 환경 조건에서 샌드페이퍼 1과 2의 COF 비교를 보여줍니다. 건조한 조건에서 샌드페이퍼 1은 테스트 초반에 0.4의 COF를 보이다가 점차 감소하여 0.3으로 안정화됩니다. 습한 조건에서 이 샘플은 0.27의 낮은 평균 COF를 나타냅니다. 이와 대조적으로 샘플 2의 COF 결과는 건식 COF 0.27, 습식 COF ~ 0.37을 보여줍니다. 

모든 COF 플롯의 데이터 진동은 거친 사포 표면에 대한 공의 슬라이딩 움직임으로 인해 발생한 진동으로 인해 발생했습니다.

그림 1: 마모 테스트 중 COF의 진화.

그림 2는 마모 흉터 분석 결과를 요약한 것입니다. 마모 흉터는 광학 현미경과 나노베아 3D 비접촉식 광학 프로파일러를 사용하여 측정했습니다. 그림 3과 그림 4는 샌드페이퍼 1과 2(습식 및 건식 조건)에서 마모 테스트 후 마모된 SS440 볼의 마모 흉터를 비교한 것입니다. 그림 4에서 볼 수 있듯이 나노베아 광학 프로파일러는 네 개의 볼과 각각의 마모 트랙의 표면 지형을 정밀하게 캡처한 다음 나노베아 마운틴 고급 분석 소프트웨어로 처리하여 체적 손실과 마모율을 계산합니다. 볼의 현미경과 프로파일 이미지에서 샌드페이퍼 1(건식) 테스트에 사용된 볼이 다른 볼에 비해 0.313의 체적 손실로 더 큰 평평한 마모 흉터를 보이는 것을 관찰할 수 있습니다. mm3. 반면, 샌드페이퍼 1(습식)의 볼륨 손실은 0.131이었습니다. mm3. 샌드페이퍼 2(건식)의 경우 볼륨 손실은 0.163이었습니다. mm3 샌드페이퍼 2(습식)의 경우 볼륨 손실이 0.237로 증가했습니다. mm3.

또한 COF가 사포의 마모 성능에 중요한 역할을 하는 것을 관찰한 것도 흥미롭습니다. 샌드페이퍼 1은 건조한 조건에서 더 높은 COF를 보였고, 이는 테스트에 사용된 SS440 볼의 마모율 상승으로 이어졌습니다. 이에 비해 습한 조건에서 샌드페이퍼 2의 COF가 높을수록 마모율이 더 높았습니다. 측정 후 샌드페이퍼의 마모 트랙은 그림 5에 표시되어 있습니다.

Sandpapers 1과 2는 모두 건조하고 습한 환경에서 작동한다고 주장합니다. 그러나 건조조건과 습윤조건에서 서로 다른 마모성능을 보였다. 나노베아 트라이보미터 재현 가능한 마모 평가를 보장하는 잘 제어된 정량화 가능하고 신뢰할 수 있는 마모 평가 기능을 제공합니다. 또한 현장 COF 측정 기능을 통해 사용자는 마모 프로세스의 다양한 단계를 COF의 진화와 연관시킬 수 있습니다. 이는 사포의 마모 메커니즘 및 마찰 특성에 대한 근본적인 이해를 높이는 데 중요합니다.

그림 2: 다양한 조건에서 볼의 마모 흉터 부피와 평균 COF를 확인합니다.

그림 3: 테스트 후 공의 흉터를 착용하십시오.

그림 4: 공의 마모 흉터의 3D 형태.

그림 5: 다양한 조건에서 샌드페이퍼에 트랙을 착용하세요.

결론

이 연구에서는 동일한 입자 수를 가진 두 종류의 사포의 마모 성능을 건식 및 습식 조건에서 평가했습니다. 사포의 사용 조건은 작업 성능의 효과에 중요한 역할을 합니다. 사포 1은 건조한 조건에서 마모 거동이 훨씬 우수했고, 사포 2는 습한 조건에서 더 우수한 성능을 보였습니다. 샌딩 공정 중 마찰은 마모 성능을 평가할 때 고려해야 할 중요한 요소입니다. 나노베아 광학 프로파일러는 공의 마모 흉터와 같은 모든 표면의 3D 형태를 정밀하게 측정하여 이 연구에서 샌드페이퍼의 마모 성능을 신뢰할 수 있게 평가합니다. 나노베아 트라이보미터는 마모 테스트 중 현장에서 마찰 계수를 측정하여 마모 공정의 여러 단계에 대한 통찰력을 제공합니다. 또한 ISO 및 ASTM을 준수하는 회전 및 선형 모드를 사용하여 반복 가능한 마모 및 마찰 테스트를 제공하며, 사전 통합된 하나의 시스템에서 고온 마모 및 윤활 모듈을 옵션으로 사용할 수 있습니다. 이 독보적인 제품군을 통해 사용자는 높은 응력, 마모 및 고온 등 볼 베어링의 다양한 가혹한 작업 환경을 시뮬레이션할 수 있습니다. 또한 고하중 하에서 우수한 내마모성 소재의 마찰 거동을 정량적으로 평가할 수 있는 이상적인 도구를 제공합니다.

이제 애플리케이션에 대해 이야기해 보겠습니다.

3D 프로파일 측정을 사용한 가죽 표면 마감 처리

가공 가죽

3D 프로파일 측정을 사용한 표면 마감

작성자

크레이그 레싱

소개

가죽 가죽의 태닝 공정이 완료되면 가죽 표면은 다양한 모양과 촉감을 위해 여러 가지 마감 공정을 거칠 수 있습니다. 이러한 기계적 공정에는 스트레칭, 버핑, 샌딩, 엠보싱, 코팅 등이 포함될 수 있습니다. 가죽의 최종 용도에 따라 더 정밀하고 제어 가능하며 반복 가능한 가공이 필요할 수도 있습니다.

프로파일 측정 검사의 중요성 R&D 및 품질 관리

육안 검사 방법의 편차가 크고 신뢰성이 낮기 때문에 마이크로 및 나노 스케일 특징을 정확하게 정량화할 수 있는 도구는 가죽 마감 공정을 개선할 수 있습니다. 가죽 표면 마감을 정량화할 수 있는 방식으로 이해하면 데이터 기반 표면 처리 선택을 개선하여 최적의 마감 결과를 얻을 수 있습니다. 나노베아 3D 비접촉식 프로파일러 는 색채 공초점 기술을 활용하여 완성된 가죽 표면을 측정하고 시장에서 가장 높은 반복성과 정확도를 제공합니다. 프로브 접촉, 표면 변화, 각도, 흡수 또는 반사율로 인해 다른 기술이 신뢰할 수 있는 데이터를 제공하지 못하는 경우, 나노베아 프로파일로미터가 성공합니다.

측정 목표

이 애플리케이션에서 NANOVEA ST400은 서로 다르지만 밀접하게 가공된 두 가죽 샘플의 표면 마감을 측정하고 비교하는 데 사용됩니다. 표면 프로파일에서 여러 표면 파라미터가 자동으로 계산됩니다.

여기서는 비교 평가를 위해 표면 거칠기, 딤플 깊이, 딤플 피치 및 딤플 직경에 초점을 맞출 것입니다.

나노비아

ST400

결과: 샘플 1

ISO 25178

높이 매개변수

기타 3D 매개변수

결과: 샘플 2

ISO 25178

높이 매개변수

기타 3D 매개변수

깊이 비교

각 샘플의 깊이 분포입니다.
다음에서 많은 수의 깊은 보조개가 관찰되었습니다.
샘플 1.

피치 비교

딤플 사이의 피치 샘플 1 약간 더 작습니다.
보다
샘플 2이지만 둘 다 비슷한 분포를 보입니다.

 평균 직경 비교

딤플의 평균 직경 분포가 비슷합니다,
와 함께
샘플 1 평균 직경이 약간 더 작은 것으로 나타났습니다.

결론

이 애플리케이션에서는 나노베아 ST400 3D 프로파일로미터가 가공 가죽의 표면 마감을 정밀하게 특성화할 수 있는 방법을 보여주었습니다. 이 연구에서는 표면 거칠기, 딤플 깊이, 딤플 피치 및 딤플 직경을 측정할 수 있는 기능을 통해 육안 검사로는 명확하지 않을 수 있는 두 샘플의 마감과 품질 차이를 정량화할 수 있었습니다.

전반적으로 샘플 1과 샘플 2의 3D 스캔 외형에는 눈에 띄는 차이가 없었습니다. 그러나 통계 분석에서는 두 샘플 사이에 분명한 차이가 있습니다. 샘플 1은 샘플 2에 비해 더 작은 직경, 더 큰 깊이, 더 작은 딤플 대 딤플 피치를 가진 더 많은 수의 딤플을 포함하고 있습니다.

추가 연구가 가능하다는 점에 유의하세요. 특정 관심 영역은 통합 AFM 또는 현미경 모듈을 사용하여 추가로 분석할 수 있습니다. 나노베아 3D 프로파일로미터의 속도는 실험실 또는 연구용으로 20mm/s에서 1m/s까지 다양하여 고속 검사의 요구를 충족하며, 맞춤형 크기, 속도, 스캐닝 기능, 클래스 1 클린룸 준수, 인덱싱 컨베이어 또는 인라인 또는 온라인 통합을 위해 구축할 수 있습니다.

이제 애플리케이션에 대해 이야기해 보겠습니다.

하이드로겔의 기계적 특성

하이드로겔의 기계적 특성

나노 들여쓰기 사용

작성자

DUANJIE LI, 박사 및 조르쥬 라미레즈

소개

하이드로겔은 수분을 매우 잘 흡수하여 자연 조직과 매우 유사한 유연성을 가진 것으로 알려져 있습니다. 이러한 유사성 덕분에 하이드로겔은 생체 재료뿐만 아니라 전자, 환경, 콘택트렌즈와 같은 소비재 분야에서도 널리 사용되고 있습니다. 각각의 고유한 응용 분야에는 특정한 하이드로젤 기계적 특성이 필요합니다.

하이드로겔을 위한 나노 인덴테이션의 중요성

하이드로젤은 테스트 파라미터 선택 및 시료 준비와 같은 나노인덴테이션에 고유한 문제를 야기합니다. 많은 나노인덴테이션 시스템은 원래 다음과 같은 용도로 설계되지 않았기 때문에 큰 한계가 있습니다. 부드러운 소재에 적합합니다. 일부 나노 압입 시스템은 코일/자석 어셈블리를 사용하여 시료에 힘을 가합니다. 실제 힘 측정이 없기 때문에 연질 테스트 시 부정확하고 비선형적인 하중이 발생합니다. 재료. 접촉 지점을 결정하는 것은 매우 어렵습니다. 깊이는 실제로 측정되는 유일한 매개 변수입니다. 수심에서 경사 변화를 관찰하는 것은 거의 불가능합니다. 깊이 대 시간 플롯 중 인덴터 팁이 하이드로젤 소재에 접근하는 기간입니다.

이러한 시스템의 한계를 극복하기 위해 나노 모듈은 나노비아 기계 테스터 개별 로드 셀로 힘 피드백을 측정하여 부드럽거나 단단한 모든 유형의 재료에 대한 높은 정확도를 보장합니다. 압전 제어 변위는 매우 정확하고 빠릅니다. 이를 통해 코일/자석 어셈블리가 있고 힘 피드백이 없는 시스템이 설명해야 하는 많은 이론적 가정을 제거함으로써 점탄성 특성에 대한 탁월한 측정이 가능합니다.

측정 목표

이 애플리케이션에서는 나노비아 나노 압입 모드의 기계적 시험기는 하이드로겔 시료의 경도, 탄성 계수 및 크리프를 연구하는 데 사용됩니다.

나노비아

PB1000

테스트 조건

유리 슬라이드 위에 놓인 하이드로겔 샘플을 나노 인덴테이션 기법을 사용하여 테스트했습니다. 나노비아 기계식 테스터. 이 부드러운 소재에는 직경 3mm의 구형 팁이 사용되었습니다. 하중은 로딩 기간 동안 0.06에서 10mN까지 선형적으로 증가했습니다. 그런 다음 70초 동안 최대 하중 10mN에서 압입 깊이의 변화로 크립을 측정했습니다.

접근 속도: 100μm/min

연락처 로드
0.06mN
최대 로드
10mN
로딩 속도

20mN/min

CREEP
70 s
결과 및 토론

시간에 따른 부하 및 깊이의 변화는 다음과 같습니다. 그림 1. 의 음모에서 관찰 할 수 있습니다. 깊이 대 시간로딩 기간이 시작될 때 경사 변화 지점을 결정하는 것은 매우 어려우며, 이는 일반적으로 압자가 부드러운 재료에 닿기 시작하는 지점으로 작동합니다. 그러나 로드 대 시간 은 하중이 가해졌을 때 하이드로겔의 특이한 거동을 보여줍니다. 하이드로젤이 볼 압자와 접촉하기 시작하면 표면 장력으로 인해 하이드로젤이 볼 압자를 잡아당겨 표면적이 감소하는 경향이 있습니다. 이러한 동작으로 인해 로딩 단계 초기에 측정된 하중이 마이너스가 됩니다. 압자가 하이드로젤에 가라앉으면서 하중이 점진적으로 증가하고, 이후 하이드로젤의 크리프 거동을 연구하기 위해 70초 동안 최대 하중 10mN에서 일정하도록 제어합니다.

그림 1: 시간의 함수에 따른 하중과 깊이의 변화.

의 줄거리는 크립 깊이 대 시간 에 표시되며 그림 2하중 대 변위 나노 인덴테이션 테스트의 플롯은 다음과 같습니다. 그림 3. 이 연구에서 사용된 하이드로겔의 경도는 16.9 KPa, 영탄성계수는 160.2 KPa이며, 올리버-파르 방법을 사용하여 하중 변위 곡선을 기반으로 계산한 결과입니다.

크리프는 하이드로젤의 기계적 특성을 연구하는 데 중요한 요소입니다. 피에조와 초감도 로드셀 사이의 폐쇄 루프 피드백 제어는 최대 하중에서 크리프 시간 동안 실제로 일정한 하중을 보장합니다. 에 표시된 바와 같이 그림 2에서 하이드로겔은 3mm 볼 팁에 가해지는 최대 10mN 하중 하에서 70초 동안 크리프의 결과로 최대 42μm까지 가라앉습니다.

그림 2: 70초 동안 최대 10mN의 부하에서 크리핑.

그림 3: 하이드로젤의 하중 대 변위 플롯입니다.

결론

이 연구에서 우리는 나노비아 기계식 테스터는 나노 압입 모드에서 경도, 영 계수 및 크리프 등 하이드로겔의 기계적 특성을 정밀하고 반복적으로 측정할 수 있습니다. 3mm의 대형 볼 팁은 하이드로겔 표면에 적절히 접촉할 수 있도록 합니다. 고정밀 모터식 샘플 스테이지를 통해 볼 팁 아래 하이드로겔 샘플의 평평한 면을 정확하게 배치할 수 있습니다. 이 연구의 하이드로겔은 16.9 KPa의 경도와 160.2 KPa의 영 계수를 나타냅니다. 크리프 깊이는 70초 동안 10mN 하중에서 ~42μm입니다.

나노비아 기계식 테스터는 단일 플랫폼에서 타의 추종을 불허하는 다기능 나노 및 마이크로 모듈을 제공합니다. 두 모듈 모두 스크래치 테스터, 경도 테스터, 마모 테스터 모드가 포함되어 있어 단일 플랫폼에서 가장 광범위하고 사용자 친화적인 테스트 범위를 제공합니다.
시스템.

이제 애플리케이션에 대해 이야기해 보겠습니다.