미국/글로벌: +1-949-461-9292
EUROPE: +39-011-3052-794
문의하기

카테고리: 고온 마찰학

 

트라이보미터를 이용한 고온 스크래치 경도 측정

고온 스크래치 경도

트라이보미터 사용

작성자

DUANJIE, 박사

소개

경도는 영구적 또는 소성 변형에 대한 재료의 저항력을 측정합니다. 1820년 독일의 광물학자 프리드리히 모스가 처음 개발한 스크래치 경도 테스트는 날카로운 물체와의 마찰로 인한 스크래치 및 마모에 대한 재료의 경도를 결정합니다.1. 모스 척도는 선형 척도가 아닌 비교 지수이므로 ASTM 표준 G171-03에 설명된 대로 보다 정확하고 정성적인 스크래치 경도 측정이 개발되었습니다.2. 다이아몬드 스타일러스로 생성된 스크래치의 평균 너비를 측정하여 스크래치 경도 수치(HSP)를 계산합니다.

고온에서 스크래치 경도 측정의 중요성

재료는 서비스 요구 사항에 따라 선택됩니다. 온도 변화와 열 구배가 큰 응용 분야의 경우 고온에서 재료의 기계적 특성을 조사하여 기계적 한계를 완전히 파악하는 것이 중요합니다. 재료, 특히 폴리머는 일반적으로 고온에서 부드러워집니다. 많은 기계적 고장은 높은 온도에서만 발생하는 크리프 변형과 열 피로로 인해 발생합니다. 따라서 고온 응용 분야에 적합한 재료를 적절히 선택하려면 고온에서 경도를 측정할 수 있는 신뢰할 수 있는 기술이 필요합니다.

측정 목표

이 연구에서 NANOVEA T50 마찰계는 실온부터 300°C까지 다양한 온도에서 테프론 샘플의 스크래치 경도를 측정합니다. NANOVEA는 고온 스크래치 경도 측정 기능을 통해 트라이보미터 고온 응용 분야용 재료의 마찰공학 및 기계적 평가를 위한 다목적 시스템입니다.

나노비아

T50

테스트 조건

나노베아 T50 무중량 표준 트라이보미터를 사용하여 실온(RT)에서 300°C 범위의 온도에서 테프론 시료에 대한 스크래치 경도 테스트를 수행했습니다. 테프론의 녹는점은 326.8°C입니다. 팁 반경 200 µm의 정점 각도 120°의 원추형 다이아몬드 스타일러스를 사용했습니다. 테프론 샘플은 스테이지 중심까지 10mm의 거리를 두고 회전식 샘플 스테이지에 고정되었습니다. 샘플을 오븐으로 가열하고 RT, 50°C, 100°C, 150°C, 200°C, 250°C 및 300°C의 온도에서 테스트했습니다.

테스트 매개변수

고온 스크래치 경도 측정

일반 힘 2 N
슬라이딩 속도 1 mm/s
슬라이딩 거리 온도당 8mm
대기권 Air
온도 RT, 50°C, 100°C, 150°C, 200°C, 250°C, 300°C.

결과 및 토론

다양한 온도에서 테프론 샘플의 스크래치 트랙 프로파일은 서로 다른 온도에서 스크래치 경도를 비교하기 위해 그림 1에 나와 있습니다. 스크래치 트랙 가장자리에 쌓인 재료는 스타일러스가 2N의 일정한 하중으로 이동하고 테프론 샘플을 쟁기질하면서 스크래치 트랙의 재료를 옆으로 밀고 변형시키면서 형성됩니다.

그림 2와 같이 스크래치 트랙을 광학 현미경으로 검사했습니다. 측정된 스크래치 트랙 폭과 계산된 스크래치 경도 수치(HSP)는 그림 3에 요약되어 비교되어 있습니다. 현미경으로 측정한 스크래치 트랙 폭은 나노베아 프로파일러로 측정한 것과 일치하며, 테프론 샘플은 더 높은 온도에서 더 넓은 스크래치 폭을 나타냅니다. 스크래치 트랙 폭은 온도가 RT에서 300oC로 상승함에 따라 281µm에서 539µm로 증가하며, 그 결과 HSP는 65에서 18MPa로 감소합니다.

고온에서의 스크래치 경도는 나노베아 T50 트라이보미터를 사용하여 높은 정밀도와 반복성으로 측정할 수 있습니다. 이 제품은 다른 경도 측정의 대체 솔루션을 제공하며, 나노베아 트라이보미터를 포괄적인 고온 트라이보 기계 평가를 위한 보다 완벽한 시스템으로 만들어 줍니다.

그림 1: 다양한 온도에서 스크래치 경도 테스트 후 스크래치 트랙 프로파일.

그림 2: 다양한 온도에서 측정한 후 현미경으로 트랙을 스크래치합니다.

그림 3: 온도에 따른 스크래치 트랙 폭과 스크래치 경도의 변화.

결론

이 연구에서는 나노베아 트라이보미터가 ASTM G171-03에 따라 고온에서 스크래치 경도를 측정하는 방법을 소개합니다. 일정한 하중에서의 스크래치 경도 테스트는 트라이보미터를 사용하여 재료의 경도를 비교할 수 있는 간단한 대체 솔루션을 제공합니다. 고온에서 스크래치 경도 측정을 수행할 수 있는 나노베아 트라이보미터는 재료의 고온 트라이보-기계적 특성을 평가하는 데 이상적인 도구입니다.

또한 나노베아 트라이보미터는 ISO 및 ASTM을 준수하는 회전 및 선형 모드를 사용하여 정밀하고 반복 가능한 마모 및 마찰 테스트를 제공하며, 고온 마모, 윤활 및 트리보 부식 모듈을 사전 통합된 하나의 시스템에서 옵션으로 사용할 수 있습니다. 옵션으로 제공되는 3D 비접촉식 프로파일러는 거칠기와 같은 기타 표면 측정과 더불어 마모 트랙의 고해상도 3D 이미징을 위해 사용할 수 있습니다.

1 프레드릭 브레덴버그; PL 라르손 (2009). "금속 및 폴리머의 스크래치 테스트: 실험 및 수치". 착용 266 (1-2): 76
2 ASTM G171-03(2009), "다이아몬드 스타일러스를 사용한 재료의 스크래치 경도에 대한 표준 시험 방법"

이제 애플리케이션에 대해 이야기해 보겠습니다.

고온에서의 현장 마모 측정

현장 마모 측정 고온에서

트라이보미터 사용

현장 마모 측정 항공 우주 트라이보미터

작성자

Duanjie Li, PhD

소개

선형 가변 차동 변압기(LVDT)는 선형 변위를 측정하는 데 사용되는 견고한 전기 변압기의 일종입니다. 파워 터빈, 유압, 자동화, 항공기, 인공위성, 원자로 등 다양한 산업 분야에서 널리 사용되고 있습니다.

본 연구에서는 NANOVEA의 LVDT 추가 기능과 고온 모듈을 소개합니다. 트라이보미터 이를 통해 고온에서 마모 과정 중에 테스트된 샘플의 마모 트랙 깊이 변화를 측정할 수 있습니다. 이를 통해 사용자는 마모 프로세스의 여러 단계를 COF의 진화와 연관시킬 수 있으며, 이는 고온 응용 분야용 재료의 마모 메커니즘 및 마찰 특성에 대한 근본적인 이해를 높이는 데 중요합니다.

측정 목표

이 연구에서는 고온에서 재료의 마모 과정의 진화를 현장에서 모니터링할 수 있는 나노베아 T50 트라이보미터의 성능을 선보이고자 합니다.

다양한 온도에서 알루미나 규산염 세라믹의 마모 과정을 제어 및 모니터링하는 방식으로 시뮬레이션합니다.

나노비아

T50

테스트 절차

알루미나 실리케이트 세라믹 플레이트의 마찰 계수, COF 및 내마모성과 같은 마찰 거동을 나노베아 트라이보미터로 평가했습니다. 알루미나 실리케이트 세라믹 플레이트를 상온인 RT에서 고온(400°C 및 800°C)으로 가열한 후 해당 온도에서 마모 테스트를 수행했습니다. 

비교를 위해 샘플을 800°C에서 400°C로 식힌 다음 실온으로 식혔을 때 마모 테스트를 수행했습니다. AI2O3 볼 팁(직경 6mm, 100 등급)을 테스트 샘플에 적용했습니다. COF, 마모 깊이 및 온도는 현장에서 모니터링되었습니다.

테스트 매개변수

핀 온 디스크 측정의

트라이보미터 LVDT 샘플

마모율 K는 K=V/(Fxs)=A/(Fxn) 공식을 사용하여 평가했으며, 여기서 V는 마모 체적, F는 정상 하중, s는 슬라이딩 거리, A는 마모 트랙의 단면적, n은 회전 수입니다. 표면 거칠기와 마모 트랙 프로파일은 나노베아 광학 프로파일러로 평가하고, 마모 트랙 형태는 광학 현미경으로 검사했습니다.

결과 및 토론

현장에서 기록된 COF 및 마모 트랙 깊이는 각각 그림 1과 그림 2에 나와 있습니다. 그림 1에서 "-I"는 RT에서 고온으로 온도를 높였을 때 수행한 테스트를 나타냅니다. "-D"는 800°C의 고온에서 온도가 낮아졌을 때를 나타냅니다.

그림 1에서 볼 수 있듯이, 다양한 온도에서 테스트한 샘플은 측정 전반에 걸쳐 약 0.6의 비슷한 COF를 보였습니다. 이러한 높은 COF는 마모 과정을 가속화하여 상당한 양의 파편을 생성합니다. 마모 트랙 깊이는 그림 2에 표시된 바와 같이 LVDT로 마모 테스트 중에 모니터링되었습니다. 시료 가열 전과 시료 냉각 후 실온에서 수행한 테스트에서 알루미나 규산염 세라믹 플레이트는 RT에서 점진적인 마모 과정을 나타내며, 마모 테스트 내내 마모 트랙 깊이가 각각 ~170 및 ~150 μm로 점차 증가합니다. 

이에 비해 고온(400°C 및 800°C)에서의 마모 테스트는 마모 과정 초기에 마모 트랙 깊이가 즉시 증가하고 테스트가 계속될수록 속도가 느려지는 등 다른 마모 거동을 보입니다. 400°C-I, 800°C 및 400°C-D 온도에서 수행된 테스트의 마모 트랙 깊이는 각각 ~140, ~350 및 ~210 μm입니다.

다양한 온도에서 핀 온 데스크 테스트 중 COF

그림 1. 다양한 온도에서 핀 온 디스크 테스트 중 마찰 계수

다양한 온도에서 알루미나 실리케이트 세라믹 플레이트의 마모 트랙 깊이

그림 2. 다양한 온도에서 알루미나 실리케이트 세라믹 플레이트의 마모 트랙 깊이의 변화

다양한 온도에서 알루미나 규산염 세라믹 플레이트의 평균 마모율과 마모 트랙 깊이를 다음을 사용하여 측정했습니다. 나노비아 에 요약된 광학 프로파일러 그림 3. 마모 트랙 깊이는 LVDT를 사용하여 기록된 것과 일치합니다. 알루미나 규산염 세라믹 플레이트는 400°C 이하의 온도에서 0.2mm3/N 미만의 마모율에 비해 800°C에서 ~0.5mm3/Nm의 상당히 증가된 마모율을 보여줍니다. 규산알루미늄 세라믹 플레이트는 짧은 가열 공정 후에도 기계적/마모 특성이 크게 향상되지 않아 열처리 전후의 마모율이 비슷합니다.

용암과 원더스톤으로도 알려진 알루미나 규산염 세라믹은 열처리 전에는 부드럽고 가공이 가능합니다. 최대 1093°C의 고온에서 장시간 소성하는 과정을 거치면 경도와 강도가 크게 향상되며, 그 후에는 다이아몬드 가공이 필요합니다. 이러한 독특한 특성 덕분에 알루미나 실리케이트 세라믹은 조각에 이상적인 소재입니다.

이 연구에서는 단시간에 소성하는 데 필요한 온도보다 낮은 온도(800°C 대 1093°C)에서 열처리해도 알루미나 실리케이트 세라믹의 기계적 및 마찰학적 특성이 개선되지 않으므로 실제 응용 분야에서 사용하기 전에 적절한 소성이 필수적인 공정임을 보여줍니다.

 
다양한 온도에서 시료의 마모 속도 및 마모 트랙 깊이 1

그림 3. 다양한 온도에서 샘플의 마모 속도 및 마모 트랙 깊이

결론

이 연구의 종합적인 마찰학 분석에 따르면 알루미나 규산염 세라믹 플레이트는 상온에서 800°C에 이르는 다양한 온도에서 비슷한 마찰 계수를 나타냅니다. 그러나 800°C에서 마모율이 ~0.5mm3/Nm로 크게 증가하여 이 세라믹의 적절한 열처리가 중요하다는 것을 보여줍니다.

나노베아 트라이보미터는 최대 1000°C의 고온 응용 분야에서 재료의 마찰 특성을 평가할 수 있습니다. 현장 COF 및 마모 트랙 깊이 측정 기능을 통해 사용자는 고온에서 사용되는 재료의 마모 메커니즘 및 마찰 특성에 대한 근본적인 이해를 향상시키는 데 중요한 마모 공정의 여러 단계를 COF의 진화와 상호 연관시킬 수 있습니다.

나노베아 트라이보미터는 ISO 및 ASTM을 준수하는 회전 및 선형 모드를 사용하여 정밀하고 반복 가능한 마모 및 마찰 테스트를 제공하며, 고온 마모, 윤활 및 트리보 부식 모듈을 하나의 사전 통합된 시스템에서 옵션으로 사용할 수 있습니다. 나노베아의 탁월한 제품군은 얇거나 두꺼운, 연질 또는 경질 코팅, 필름 및 기판의 모든 범위의 마찰 특성을 측정하는 데 이상적인 솔루션입니다.

옵션으로 제공되는 3D 비접촉식 프로파일러는 거칠기와 같은 기타 표면 측정 외에도 마모 트랙의 고해상도 3D 이미징에 사용할 수 있습니다.

현장 마모 측정

이제 애플리케이션에 대해 이야기해 보겠습니다.

회전 마모와 선형 마모 및 COF? (나노베아 트라이보미터를 사용한 종합 연구)

마모는 반대쪽 표면의 기계적 작용으로 인해 표면의 재료가 제거되고 변형되는 과정입니다. 단방향 슬라이딩, 롤링, 속도, 온도 등 다양한 요인의 영향을 받습니다. 마모, 마찰학에 대한 연구는 물리학, 화학에서 기계 공학, 재료 과학에 이르기까지 다양한 분야에 걸쳐 있습니다. 마모의 복잡한 특성으로 인해 접착 마모, 연마 마모, 표면 피로, 프레팅 마모 및 침식 마모와 같은 특정 마모 메커니즘 또는 프로세스에 대한 별도의 연구가 필요합니다. 그러나 "산업용 마모"는 일반적으로 시너지 효과로 발생하는 여러 마모 메커니즘을 포함합니다.

선형 왕복 마모 테스트와 회전(Pin on Disk) 마모 테스트는 재료의 슬라이딩 마모 거동을 측정하기 위해 널리 사용되는 두 가지 ASTM 준수 설정입니다. 마모 테스트 방법의 마모율 값은 재료 조합의 상대적 순위를 예측하는 데 자주 사용되므로 다양한 테스트 설정을 사용하여 측정된 마모율의 반복성을 확인하는 것이 매우 중요합니다. 이를 통해 사용자는 문헌에 보고된 마모율 값을 신중하게 고려할 수 있으며, 이는 재료의 마찰 특성을 이해하는 데 중요합니다.

자세히 읽어보세요!

마찰학으로 브레이크 패드 평가하기


브레이크 패드 성능 평가의 중요성

브레이크 패드는 여러 가지 재료로 구성된 복합 재료로, 수많은 안전 요건을 충족할 수 있어야 합니다. 이상적인 브레이크 패드는 마찰 계수(COF)가 높고, 마모율이 낮으며, 소음이 적고, 다양한 환경에서도 안정성을 유지해야 합니다. 브레이크 패드의 품질이 이러한 요건을 충족할 수 있는지 확인하기 위해 마찰 테스트를 통해 중요한 사양을 파악할 수 있습니다.


브레이크 패드의 신뢰성은 매우 중요하며, 승객의 안전도 결코 소홀히 해서는 안 됩니다. 따라서 작동 조건을 재현하고 가능한 고장 지점을 식별하는 것이 중요합니다.
나노베아와 함께 트라이보미터, 핀, 볼 또는 플랫과 끊임없이 움직이는 카운터 재료 사이에 일정한 하중이 가해집니다. 두 재료 사이의 마찰은 견고한 로드 셀로 수집되어 다양한 하중과 속도에서 재료 특성을 수집하고 고온, 부식성 또는 액체 환경에서 테스트됩니다.



측정 목표

이 연구에서는 상온에서 700°C까지 지속적으로 온도가 상승하는 환경에서 브레이크 패드의 마찰 계수를 연구했습니다. 브레이크 패드의 눈에 띄는 고장이 관찰될 때까지 현장에서 환경 온도를 올렸습니다. 슬라이딩 인터페이스 근처의 온도를 측정하기 위해 핀의 뒷면에 열전대를 부착했습니다.



테스트 절차 및 방법




결과 및 토론

이 연구는 주로 브레이크 패드가 고장 나기 시작하는 온도에 초점을 맞추고 있습니다. 핀 재질이 브레이크 로터와 동일하지 않기 때문에 획득한 COF는 실제 값을 나타내지 않습니다. 또한 수집된 온도 데이터는 슬라이딩 인터페이스 온도가 아닌 핀의 온도라는 점에 유의해야 합니다.

 








테스트 시작 시(실온) SS440C 핀과 브레이크 패드 사이의 COF는 약 0.2의 일관된 값을 보였습니다. 온도가 상승함에 따라 COF는 꾸준히 증가하여 350°C 근처에서 0.26으로 정점을 찍었습니다. 390°C를 넘어서면 COF가 빠르게 감소하기 시작합니다. 450°C에서 다시 0.2로 증가하기 시작했지만 얼마 지나지 않아 0.05로 감소하기 시작했습니다.


브레이크 패드가 지속적으로 고장 나는 온도는 500°C 이상의 온도에서 확인되었습니다. 이 온도가 지나면 더 이상 시작 COF인 0.2를 유지할 수 없었습니다.



결론




브레이크 패드는 500°C가 넘는 온도에서 지속적으로 고장을 일으켰습니다. 0.2의 COF는 0.26까지 서서히 상승하다가 테스트가 끝날 때(580°C) 0.05로 떨어집니다. 0.05와 0.2의 차이는 4배입니다. 즉, 580°C에서 동일한 제동력을 얻으려면 상온에서보다 4배 더 큰 힘이 필요하다는 뜻입니다!


이 연구에는 포함되지 않았지만, 나노베아 트라이보미터는 브레이크 패드의 또 다른 중요한 특성인 마모율을 관찰하기 위한 테스트도 수행할 수 있습니다. 키사이트의 3D 비접촉식 프로파일로미터를 활용하면 마모 트랙의 부피를 측정하여 샘플이 얼마나 빨리 마모되는지 계산할 수 있습니다. 마모 테스트는 다양한 테스트 조건과 환경에서 나노베아 트라이보미터로 수행하여 작동 조건을 가장 잘 시뮬레이션할 수 있습니다.

이제 애플리케이션에 대해 이야기해 보겠습니다.

고온 마찰학

트라이보미터를 이용한 고온 스크래치 경도 측정

재료는 서비스 요구 사항에 따라 선택됩니다. 온도 변화와 열 구배가 큰 응용 분야의 경우 고온에서 재료의 기계적 특성을 조사하여 기계적 한계를 완전히 파악하는 것이 중요합니다. 재료, 특히 폴리머는 일반적으로 고온에서 부드러워집니다. 많은 기계적 고장은 높은 온도에서만 발생하는 크리프 변형과 열 피로로 인해 발생합니다. 따라서 고온 응용 분야에 적합한 재료를 적절히 선택하기 위해서는 고온 스크래치 경도를 측정하는 신뢰할 수 있는 기술이 필요합니다.

트라이보미터를 이용한 고온 스크래치 경도 측정