الولايات المتحدة الأمريكية / العالمية: 9292-461-949-1+
أوروبا: 794-3052-011-39+
تراسل معنا

التصنيف: اختبار الترايبولوجي

 

القلق اختبار ارتداء الاحتكاك

القلق تقييم ارتداء

ارتداء التقييم المقلق

القلق من تقييم التآكل في الطيران

مؤلف:

دوانجي لي ، دكتوراه

تمت مراجعته من

جوسلين اسبارزا

القلق من تقييم التآكل في التعدين وعلم المعادن

مقدمة

التخريب هو "عملية تآكل خاصة تحدث في منطقة التلامس بين مادتين تحت الحمل وتخضع لحركة نسبية دقيقة عن طريق الاهتزاز أو بعض القوة الأخرى." عندما تكون الماكينات قيد التشغيل ، تحدث الاهتزازات حتمًا في الوصلات المثبتة أو المثبتة بمسامير ، وبين المكونات غير المخصصة للتحرك ، وفي أدوات التوصيل والمحامل المتذبذبة. غالبًا ما تكون سعة هذه الحركة الانزلاقية النسبية في حدود ميكرومتر إلى مليمتر. تسبب هذه الحركة المتكررة منخفضة السعة تآكلًا ميكانيكيًا موضعيًا خطيرًا ونقل المواد على السطح ، مما قد يؤدي إلى انخفاض كفاءة الإنتاج أو أداء الماكينة أو حتى تلف الجهاز.

أهمية الكمية
القلق تقييم ارتداء

غالبًا ما يشتمل التآكل المزعج على العديد من آليات التآكل المعقدة التي تحدث عند سطح التلامس، بما في ذلك كشط الجسمين، والالتصاق و/أو التآكل الناتج عن التعب. من أجل فهم آلية التآكل المزعج واختيار أفضل المواد للحماية من التآكل، هناك حاجة إلى تقييم موثوق وكمي للتآكل. يتأثر سلوك التآكل بشكل كبير ببيئة العمل، مثل سعة الإزاحة والتحميل الطبيعي والتآكل ودرجة الحرارة والرطوبة والتشحيم. متعدد الاستخدامات تريبومتر التي يمكن أن تحاكي ظروف العمل الواقعية المختلفة ستكون مثالية لتقييم التآكل المزعج.

Steven R. Lampman ، ASM Handbook: Volume 19: Figue and Fracture
http://www.machinerylubrication.com/Read/693/fretting-wear

هدف القياس

في هذه الدراسة ، قمنا بتقييم سلوك التآكل الناتج عن الاحتكاك لعينة من الفولاذ المقاوم للصدأ SS304 بسرعات تذبذب ودرجات حرارة مختلفة لإظهار قدرة نانوفيا T50 جهاز قياس التثبيط في محاكاة عملية تآكل المعدن بطريقة جيدة التحكم والمراقبة.

نانوفيا

T50

شروط الاختبار

تم تقييم مقاومة التآكل الناتجة عن عينة من الفولاذ المقاوم للصدأ SS304 بواسطة نانوفيا جهاز قياس ثلاثي باستخدام وحدة التآكل الترددية الخطية. تم استخدام كرة مرحاض (قطرها 6 مم) كمادة مضادة. تم فحص مسار التآكل باستخدام نانوفيا 3D بروفايل عدم الاتصال. 

تم إجراء الاختبار عند درجة حرارة الغرفة (RT) و 200 °C لدراسة تأثير درجات الحرارة المرتفعة على مقاومة التآكل الناتج عن الاحتكاك لعينة SS304. قامت لوحة التسخين في مرحلة العينة بتسخين العينة أثناء اختبار الحنق عند 200 °معدل التآكل ، ك، باستخدام الصيغة K = V / (F × s)، أين الخامس هو الحجم البالي ، F هو الحمل العادي ، و س هي المسافة المنزلقة.

يرجى ملاحظة أنه تم استخدام كرة المرحاض كمادة مضادة كمثال في هذه الدراسة. يمكن تطبيق أي مادة صلبة ذات أشكال وتشطيبات سطحية مختلفة باستخدام تركيبات مخصصة لمحاكاة حالة التطبيق الفعلية.

معلمات الاختبار

قياسات التآكل

النتائج والمناقشة

يتيح ملف مسار التآكل ثلاثي الأبعاد تحديدًا مباشرًا ودقيقًا لخسارة حجم مسار التآكل المحسوب بواسطة نانوفيا برنامج تحليل الجبال. 

يُظهر اختبار التآكل الترددي بسرعة منخفضة تبلغ 100 دورة في الدقيقة ودرجة حرارة الغرفة مسار تآكل صغير يبلغ 0.014 مم³. وبالمقارنة ، فإن اختبار التآكل الذي يتم إجراؤه بسرعة عالية تبلغ 1000 دورة في الدقيقة يخلق مسار تآكل أكبر بكثير بحجم 0.12 مم³. يمكن أن تُعزى عملية التآكل المتسارعة هذه إلى الحرارة العالية والاهتزاز الشديد المتولد أثناء اختبار التآكل ، والذي يعزز أكسدة الحطام المعدني وينتج عنه تآكل شديد ثلاثي الأجسام. اختبار التآكل عند درجة حرارة مرتفعة تبلغ 200 °يشكل C مسار تآكل أكبر يبلغ 0.27 ملم³.

يبلغ معدل التآكل في اختبار التآكل عند 1000 دورة في الدقيقة 1.5 × 10-4 مم³/ نيوتن متر ، وهو ما يقرب من تسع مرات مقارنة مع اختبار التآكل الترددي عند 100 دورة في الدقيقة. يؤدي اختبار التآكل عند درجة حرارة مرتفعة إلى زيادة سرعة التآكل إلى 3.4 × 10-4 مم³/ نيوتن متر. يُظهر هذا الاختلاف الكبير في مقاومة التآكل التي تُقاس بسرعات ودرجات حرارة مختلفة أهمية المحاكاة المناسبة لتآكل الحشوات للتطبيقات الواقعية.

يمكن أن يتغير سلوك التآكل بشكل كبير عندما يتم إدخال تغييرات صغيرة في ظروف الاختبار في نظام ثلاثي. براعة نانوفيا يسمح مقياس التآكل بقياس التآكل في ظل ظروف مختلفة ، بما في ذلك درجة الحرارة العالية والتشحيم والتآكل وغيرها. يتيح التحكم الدقيق في السرعة والموضع بواسطة المحرك المتقدم للمستخدمين إجراء اختبار التآكل بسرعات تتراوح من 0.001 إلى 5000 دورة في الدقيقة ، مما يجعله أداة مثالية لمختبرات البحث / الاختبار لفحص التآكل في الظروف الترايبولوجية المختلفة.

القلق من تآكل المسارات في ظروف مختلفة

تحت المجهر الضوئي

تآكل مسارات الاهتراء في ظروف مختلفة تحت المجهر الضوئي

3D ارتداء ملامح المسارات

توفر المزيد من البصيرة في الفهم الأساسي
من آلية ارتداء الحنق

ملامح مسار ارتداء 3D - الحنق

ملخص نتيجة ارتداء المسارات

تم قياسها باستخدام معلمات اختبار مختلفة

خاتمة

في هذه الدراسة ، عرضنا قدرة نانوفيا جهاز قياس ثلاثي في تقييم سلوك التآكل الناتج عن الحكة لعينة من الفولاذ المقاوم للصدأ SS304 بطريقة كمية وجيدة التحكم. 

تلعب سرعة الاختبار ودرجة الحرارة أدوارًا مهمة في مقاومة التآكل الخشن للمواد. نتج عن الحرارة العالية والاهتزاز الشديد أثناء الاحتكاك تآكلًا متسارعًا بشكل كبير لعينة SS304 بما يقرب من تسع مرات. ارتفاع درجة الحرارة 200 °زاد C من معدل التآكل إلى 3.4 × 10-4 مم3/ نيوتن متر. 

براعة نانوفيا يجعل منه أداة قياس الاحتكاك أداة مثالية لقياس تآكل الاحتكاك في ظل ظروف مختلفة ، بما في ذلك درجات الحرارة المرتفعة والتشحيم والتآكل وغيرها.

نانوفيا توفر أجهزة قياس الاحتكاك اختبار تآكل واحتكاك دقيق وقابل للتكرار باستخدام أوضاع دوارة وخطية متوافقة مع ISO و ASTM ، مع تآكل اختياري عالي الحرارة ، ووحدات تزييت وتآكل تريبو متوفرة في نظام واحد متكامل مسبقًا. تعد مجموعتنا التي لا مثيل لها حلاً مثاليًا لتحديد النطاق الكامل للخصائص الترايبولوجية للطلاءات والأغشية والركائز الرقيقة أو السميكة أو الناعمة أو القاسية.

الآن ، لنتحدث عن طلبك

المحامل الكروية: دراسة مقاومة التآكل عالية القوة



مقدمة

يستخدم محمل الكرة الكرات لتقليل الاحتكاك الدوراني ودعم الأحمال الشعاعية والمحورية. تنتج الكرات المتدحرجة بين سلالات المحامل معامل احتكاك أقل بكثير (COF) مقارنة بسطحين مستويين ينزلقان ضد بعضهما البعض. غالبًا ما تتعرض المحامل الكروية لمستويات عالية من إجهاد التلامس والتآكل والظروف البيئية القاسية مثل درجات الحرارة المرتفعة. لذلك، تعد مقاومة الكرات للتآكل تحت الأحمال العالية والظروف البيئية القاسية أمرًا بالغ الأهمية لإطالة عمر محمل الكرة لتقليل التكلفة والوقت اللازم للإصلاحات والاستبدال.
يمكن العثور على المحامل الكروية في جميع التطبيقات تقريبًا التي تتضمن أجزاء متحركة. يتم استخدامها بشكل شائع في صناعات النقل مثل الطيران والسيارات بالإضافة إلى صناعة الألعاب التي تصنع عناصر مثل سبينر وألواح التزلج.

تقييم تآكل المحامل الكروية عند الأحمال العالية

يمكن تصنيع محامل الكرات من قائمة واسعة من المواد. تتراوح المواد شائعة الاستخدام بين المعادن مثل الفولاذ المقاوم للصدأ والفولاذ الكروم أو السيراميك مثل كربيد التنغستن (WC) ونيتريد السيليكون (Si3n4). للتأكد من أن المحامل الكروية المصنعة تتمتع بمقاومة التآكل المطلوبة المثالية لظروف التطبيق المحدد، من الضروري إجراء تقييمات احتكاكية موثوقة تحت الأحمال العالية. يساعد اختبار الاحتكاك في قياس سلوكيات التآكل للمحامل الكروية المختلفة ومقارنتها بطريقة يتم التحكم فيها ومراقبتها لاختيار أفضل مرشح للتطبيق المستهدف.

هدف القياس

في هذه الدراسة، نعرض النانوفيا ثلاثي الأبعاد كأداة مثالية لمقارنة مقاومة التآكل للمحامل الكروية المختلفة تحت الأحمال العالية.

الشكل 1: إعداد اختبار التحمل.

إجراء اختبار

تم تقييم معامل الاحتكاك وCOF ومقاومة التآكل للمحامل الكروية المصنوعة من مواد مختلفة بواسطة مقياس Nanovea Tribometer. تم استخدام ورق الصنفرة الحصباء P100 كمادة مضادة. تم فحص ندوب التآكل للمحامل الكروية باستخدام أ نانوفيا ملف تعريف عدم الاتصال ثلاثي الأبعاد بعد انتهاء اختبارات التآكل. يتم تلخيص معلمات الاختبار في الجدول 1. معدل التآكل، ك، باستخدام الصيغة K = V / (F × s)، أين الخامس هو الحجم البالي ، F هو الحمل العادي و س هي المسافة المنزلقة. تم تقييم ندوب ارتداء الكرة بواسطة أ نانوفيا أداة تعريف عدم الاتصال ثلاثية الأبعاد لضمان قياس دقيق لحجم التآكل.
تسمح ميزة تحديد المواقع الشعاعية الآلية لمقياس الاحتكاك بتقليل نصف قطر مسار التآكل طوال مدة الاختبار. يُطلق على وضع الاختبار هذا اسم الاختبار الحلزوني وهو يضمن أن محمل الكرة ينزلق دائمًا على سطح جديد من ورق الصنفرة (الشكل 2). إنه يحسن بشكل كبير من تكرار اختبار مقاومة التآكل على الكرة. يوفر جهاز التشفير المتقدم 20 بت للتحكم في السرعة الداخلية وجهاز التشفير 16 بت للتحكم في الموضع الخارجي معلومات دقيقة عن السرعة والموضع في الوقت الفعلي، مما يسمح بالتعديل المستمر لسرعة الدوران لتحقيق سرعة انزلاق خطية ثابتة عند جهة الاتصال.
يرجى ملاحظة أنه تم استخدام ورق الصنفرة P100 Grit لتبسيط سلوك التآكل بين المواد الكروية المختلفة في هذه الدراسة ويمكن استبداله بأي سطح مادي آخر. يمكن استبدال أي مادة صلبة لمحاكاة أداء مجموعة واسعة من أدوات التوصيل المادية في ظل ظروف التطبيق الفعلية، كما هو الحال في السوائل أو مواد التشحيم.

الشكل 2: رسم توضيحي للممرات الحلزونية لمحمل الكرة على ورق الصنفرة.
الجدول 1: اختبار معلمات قياسات التآكل.

 

النتائج والمناقشة

يعد معدل التآكل عاملاً حيويًا لتحديد عمر خدمة المحمل الكروي، في حين يكون انخفاض COF أمرًا مرغوبًا فيه لتحسين أداء المحمل وكفاءته. يقارن الشكل 3 تطور COF للمحامل الكروية المختلفة مقابل ورق الصنفرة أثناء الاختبارات. تُظهر كرة Cr Steel زيادة في COF بمقدار ~0.4 أثناء اختبار التآكل، مقارنة بـ ~0.32 و~0.28 لمحامل الكرات SS440 وAl2O3. من ناحية أخرى، تُظهر كرة المرحاض COF ثابتًا يبلغ ~0.2 طوال اختبار التآكل. يمكن ملاحظة تباين COF الملحوظ خلال كل اختبار والذي يعزى إلى الاهتزازات الناتجة عن الحركة المنزلقة للمحامل الكروية على سطح ورق الصنفرة الخشن.

 

الشكل 3: تطور COF أثناء اختبارات التآكل.

الشكل 4 والشكل 5 يقارنان ندوب التآكل للمحامل الكروية بعد أن تم قياسها بواسطة المجهر الضوئي ومحدد التعريف البصري Nanovea غير المتصل، على التوالي، ويلخص الجدول 2 نتائج تحليل مسار التآكل. يحدد ملف تعريف Nanovea 3D بدقة حجم تآكل المحامل الكروية، مما يجعل من الممكن حساب ومقارنة معدلات التآكل للمحامل الكروية المختلفة. يمكن ملاحظة أن كرات Cr Steel وSS440 تظهر عليها ندوب تآكل مسطحة أكبر بكثير مقارنة بالكرات الخزفية، أي Al2O3 وWC بعد اختبارات التآكل. تتمتع كرات Cr Steel وSS440 بمعدلات تآكل مماثلة تبلغ 3.7×10-3 و3.2×10-3 م3/ن م، على التوالي. بالمقارنة، كرة Al2O3 تظهر مقاومة تآكل محسنة مع معدل تآكل يبلغ 7.2×10-4 m3/N·m. بالكاد تظهر على كرة WC خدوش بسيطة في منطقة مسار التآكل الضحلة، مما يؤدي إلى انخفاض كبير في معدل التآكل بمقدار 3.3×10-6 مم3/نيوتن متر.

الشكل 4: ارتداء ندوب الكرات بعد الاختبارات.

الشكل 5: مورفولوجية ثلاثية الأبعاد لندوب التآكل على المحامل الكروية.

الجدول 2: تحليل ارتداء الندبة للمحامل الكروية.

يوضح الشكل 6 صورًا مجهرية لمسارات التآكل الناتجة على الورق الرملي بواسطة المحامل الكروية الأربعة. من الواضح أن كرة المرحاض أنتجت مسار التآكل الأكثر شدة (إزالة جميع جزيئات الرمل تقريبًا في طريقها) وتمتلك أفضل مقاومة للتآكل. بالمقارنة، تركت كرات Cr Steel وSS440 كمية كبيرة من الحطام المعدني على مسار تآكل ورق الصنفرة.
توضح هذه الملاحظات أيضًا أهمية الاستفادة من الاختبار الحلزوني. إنه يضمن أن محمل الكرة ينزلق دائمًا على سطح جديد من ورق الصنفرة، مما يحسن بشكل كبير من تكرار اختبار مقاومة التآكل.

الشكل 6: وضع المسارات على ورق الصنفرة مقابل محامل كروية مختلفة.

خاتمة

تلعب مقاومة التآكل للمحامل الكروية تحت الضغط العالي دورًا حيويًا في أداء الخدمة. تتميز محامل الكرات الخزفية بمقاومة تآكل محسنة بشكل كبير في ظل ظروف الضغط العالي وتقليل الوقت والتكلفة بسبب إصلاح المحامل أو استبدالها. في هذه الدراسة، يُظهر محمل كروي WC مقاومة تآكل أعلى بكثير مقارنة بالمحامل الفولاذية، مما يجعله مرشحًا مثاليًا لتطبيقات المحامل حيث يحدث تآكل شديد.
تم تصميم Nanovea Tribometer بقدرات عزم دوران عالية لأحمال تصل إلى 2000 نيوتن ومحرك دقيق ومتحكم لسرعات دوران من 0.01 إلى 15000 دورة في الدقيقة. إنه يوفر اختبار التآكل والاحتكاك المتكرر باستخدام الأوضاع الدورانية والخطية المتوافقة مع ISO وASTM، مع توفر وحدات التآكل والتشحيم الاختيارية ذات درجة الحرارة العالية في نظام واحد متكامل مسبقًا. يتيح هذا النطاق الذي لا مثيل له للمستخدمين محاكاة بيئات العمل القاسية المختلفة للمحامل الكروية بما في ذلك الضغط العالي والتآكل ودرجة الحرارة المرتفعة، وما إلى ذلك. كما أنه يعمل كأداة مثالية للتقييم الكمي للسلوكيات الاحتكاكية للمواد الفائقة المقاومة للتآكل تحت الأحمال العالية.
يوفر ملف تعريف Nanovea 3D Non-Contact Profiler قياسات دقيقة لحجم التآكل ويعمل كأداة لتحليل الشكل التفصيلي لمسارات التآكل، مما يوفر رؤى إضافية في الفهم الأساسي لآليات التآكل.

أُعدت بواسطة
دوانجي لي، دكتوراه، جوناثان توماس، وبيير ليرو

اختبار ارتداء الكتلة على الحلقة

أهمية تقييم ارتداء البلوك على الحلبة

التآكل المنزلق هو الفقد التدريجي للمواد الذي ينتج عن انزلاق مادتين ضد بعضهما البعض في منطقة التلامس تحت الحمل. يحدث ذلك حتماً في مجموعة متنوعة من الصناعات التي تعمل فيها الآلات والمحركات ، بما في ذلك السيارات والفضاء والنفط والغاز وغيرها الكثير. تسبب حركة الانزلاق هذه تآكلًا ميكانيكيًا خطيرًا ونقل المواد على السطح ، مما قد يؤدي إلى انخفاض كفاءة الإنتاج أو أداء الماكينة أو حتى تلف الجهاز.
 

 

غالبًا ما يتضمن التآكل المنزلق آليات تآكل معقدة تحدث عند سطح التلامس، مثل تآكل الالتصاق، وتآكل الجسمين، وتآكل ثلاثة أجسام، وتآكل التعب. يتأثر سلوك تآكل المواد بشكل كبير ببيئة العمل، مثل التحميل العادي والسرعة والتآكل والتشحيم. متعدد الاستخدامات تريبومتر التي يمكنها محاكاة ظروف العمل الواقعية المختلفة ستكون مثالية لتقييم التآكل.
يعد اختبار Block-on-Ring (ASTM G77) تقنية مستخدمة على نطاق واسع لتقييم سلوكيات التآكل المنزلق للمواد في ظروف محاكاة مختلفة، ويسمح بتصنيف موثوق لأزواج المواد لتطبيقات احتكاكية محددة.
 
 

 

هدف القياس

في هذا التطبيق ، يقيس جهاز الفحص الميكانيكي Nanovea YS و UTS من عينات الفولاذ المقاوم للصدأ SS304 وعينات سبائك الألومنيوم Al6061 المعدنية. تم اختيار العينات لقيم YS و UTS المعترف بها بشكل شائع والتي توضح موثوقية طرق المسافة البادئة لـ Nanovea.

 

تم تقييم سلوك التآكل المنزلق لكتلة H-30 على حلقة S-10 بواسطة مقياس الاحتكاك الخاص بـ Nanovea باستخدام وحدة Block-on-Ring. كتلة H-30 مصنوعة من فولاذ أداة 01 بصلابة 30HRC، في حين أن الحلقة S-10 مصنوعة من الفولاذ من النوع 4620 بصلابة سطحية 58 إلى 63 HRC وقطر الحلقة ~ 34.98 ملم. تم إجراء اختبارات الكتلة على الحلقة في بيئات جافة ومشحمة لدراسة التأثير على سلوك التآكل. تم إجراء اختبارات التشحيم في الزيوت المعدنية الثقيلة USP. تم فحص مسار التآكل باستخدام Nanovea مقياس عدم الاتصال ثلاثي الأبعاد. يتم تلخيص معلمات الاختبار في الجدول 1. تم تقييم معدل التآكل (K) باستخدام الصيغة K=V/(F×s)، حيث V هو الحجم البالي، F هو الحمل الطبيعي، s هي المسافة المنزلقة.

 

 

النتائج والمناقشة

يقارن الشكل 2 معامل الاحتكاك (COF) لاختبارات Block-on-Ring في البيئات الجافة والمشحمة. تحتوي الكتلة على احتكاك أكبر بكثير في البيئة الجافة مقارنة بالبيئة المشحمة. COF
يتقلب خلال فترة التشغيل في أول 50 ثورة ويصل إلى COF ثابت يبلغ ~ 0.8 لبقية اختبار التآكل في 200 ثورة. بالمقارنة، فإن اختبار Block-on-Ring الذي تم إجراؤه في تشحيم الزيوت المعدنية الثقيلة USP يُظهر COF منخفضًا ثابتًا يبلغ 0.09 طوال اختبار التآكل ذو 500000 ثورة. يقلل زيت التشحيم بشكل كبير من COF بين الأسطح بمقدار 90 مرة تقريبًا.

 

يوضح الشكلان 3 و 4 الصور البصرية والمقاطع العرضية ثنائية الأبعاد لندبات التآكل على الكتل بعد اختبارات التآكل الجافة والمزلقة. يتم سرد أحجام مسار التآكل ومعدلات التآكل في الجدول 2. تُظهر الكتلة الفولاذية بعد اختبار التآكل الجاف بسرعة دوران منخفضة تبلغ 72 دورة في الدقيقة لـ 200 دورة حجم ندبة تآكل كبيرة تبلغ 9.45 مم˙. وبالمقارنة ، فإن اختبار التآكل الذي يتم إجراؤه بسرعة أعلى تبلغ 197 دورة في الدقيقة لـ 500000 دورة في زيوت التشحيم بالزيوت المعدنية ينتج عنه حجم مسار تآكل أصغر بكثير يبلغ 0.03 مم˙.

 


تُظهر الصور الموجودة في ÿgure 3 حدوث تآكل شديد أثناء الاختبارات في الظروف الجافة مقارنة بالتآكل الخفيف الناتج عن اختبار التآكل المزلّق. تعمل الحرارة العالية والاهتزازات الشديدة المتولدة أثناء اختبار التآكل الجاف على تعزيز أكسدة الحطام المعدني مما يؤدي إلى تآكل شديد لثلاثة أجسام. في اختبار التزليق ، يقلل الزيت المعدني من الاحتكاك ويبرد وجه التلامس بالإضافة إلى نقل الحطام الكاشطة الناتج أثناء التآكل. وهذا يؤدي إلى انخفاض كبير في معدل التآكل بمعامل ~ 8 × 10. يوضح هذا الاختلاف الكبير في مقاومة التآكل في بيئات مختلفة أهمية محاكاة التآكل الانزلاقي المناسبة في ظروف الخدمة الواقعية.

 


يمكن أن يتغير سلوك التآكل بشكل كبير عند إدخال تغييرات صغيرة في ظروف الاختبار. إن تعدد استخدامات مقياس النبض في Nanovea يسمح بقياس التآكل في درجات الحرارة العالية ، والتشحيم ، وظروف تريبوكوروسيون. يتيح التحكم الدقيق في السرعة والموضع بواسطة المحرك المتقدم إجراء اختبارات التآكل بسرعات تتراوح من 0.001 إلى 5000 دورة في الدقيقة ، مما يجعله أداة مثالية لمختبرات البحث / الاختبار لفحص التآكل في مختلف الظروف الترايبولوجية.

 

تم فحص حالة سطح العينات بواسطة جهاز القياس البصري غير المتصل بـ Nanovea. يوضح الشكل 5 الشكل المورفولوجي السطحي للحلقات بعد اختبارات التآكل. تتم إزالة شكل الأسطوانة لتقديم أفضل مظهر وخشونة السطح الناتجة عن عملية التآكل المنزلق. حدث تخشين السطح بشكل كبير بسبب عملية الكشط ثلاثية الأجسام أثناء اختبار التآكل الجاف لـ 200 دورة. تظهر الكتلة والحلقة بعد اختبار التآكل الجاف خشونة Ra تبلغ 14.1 و 18.1 ميكرومتر ، على التوالي ، مقارنة بـ 5.7 و 9.1 ميكرومتر على المدى الطويل 500000 - اختبار التآكل المشحم بالثورة بسرعة أعلى. يوضح هذا الاختبار أهمية التشحيم المناسب لتلامس أسطوانة حلقة المكبس. يؤدي التآكل الشديد إلى إتلاف سطح التلامس بسرعة دون تزييت ويؤدي إلى تدهور لا رجعة فيه في جودة الخدمة وحتى كسر المحرك.

 

 

خاتمة

نعرض في هذه الدراسة كيفية استخدام مقياس Tribometer الخاص بـ Nanovea لتقييم سلوك التآكل المنزلق للزوجين المعدنيين الفولاذيين باستخدام وحدة Block-on-Ring التي تتبع معيار ASTM G77. يلعب زيت التشحيم دورًا حاسمًا في خصائص التآكل لزوج المواد. يقلل الزيت المعدني من معدل تآكل كتلة H-30 بعامل ~8×10ˆ وCOF بمقدار ~90 مرة. إن تعدد استخدامات مقياس Tribometer الخاص بـ Nanovea يجعله أداة مثالية لقياس سلوك التآكل في ظل ظروف التشحيم المختلفة ودرجات الحرارة المرتفعة وظروف التآكل الثلاثي.

يقدم مقياس Tribometer من Nanovea اختبارًا دقيقًا ومتكررًا للتآكل والاحتكاك باستخدام الأوضاع الدورانية والخطية المتوافقة مع ISO وASTM، مع وحدات اختيارية للتآكل والتشحيم والتآكل الثلاثي عند درجة الحرارة العالية متوفرة في نظام واحد متكامل مسبقًا. يعد نطاق Nanovea الذي لا مثيل له حلاً مثاليًا لتحديد النطاق الكامل للخصائص الاحتكاكية للطبقات والأغشية والركائز الرقيقة أو السميكة أو الناعمة أو الصلبة.

الآن ، لنتحدث عن طلبك

تقييم الاهتراء والخدش للأسلاك النحاسية المعالجة بالسطح

أهمية تقييم اهتراء وخدش الأسلاك النحاسية

للنحاس تاريخ طويل من الاستخدام في الأسلاك الكهربائية منذ اختراع المغناطيس الكهربائي والتلغراف. يتم استخدام الأسلاك النحاسية في مجموعة واسعة من المعدات الإلكترونية مثل الألواح والعدادات وأجهزة الكمبيوتر وآلات الأعمال والأجهزة بفضل مقاومتها للتآكل وقابلية اللحام والأداء في درجات حرارة مرتفعة تصل إلى 150 درجة مئوية. يستخدم ما يقرب من نصف النحاس المستخرج في تصنيع الأسلاك الكهربائية وموصلات الكابلات.

تعد جودة سطح الأسلاك النحاسية أمرًا بالغ الأهمية لأداء خدمة التطبيق وعمره. قد تؤدي العيوب الدقيقة في الأسلاك إلى التآكل المفرط ، وبدء الشقوق وانتشارها ، وانخفاض الموصلية ، وقابلية اللحام غير الكافية. تزيل المعالجة المناسبة للأسطح النحاسية عيوب السطح الناتجة أثناء سحب الأسلاك مما يحسن مقاومة التآكل والخدش والتآكل. تتطلب العديد من تطبيقات الفضاء مع الأسلاك النحاسية سلوكًا متحكمًا لمنع حدوث عطل غير متوقع في المعدات. هناك حاجة إلى قياسات موثوقة وقابلة للقياس الكمي لتقييم مقاومة التآكل والخدش بشكل صحيح لسطح الأسلاك النحاسية.

 
 

 

هدف القياس

في هذا التطبيق ، نقوم بمحاكاة عملية تآكل متحكم بها لمعالجات مختلفة لأسطح الأسلاك النحاسية. اختبار الخدش يقيس الحمل المطلوب للتسبب في فشل الطبقة السطحية المعالجة. تعرض هذه الدراسة النانوفيا ثلاثي الأبعاد و اختبار ميكانيكي كأدوات مثالية لتقييم ومراقبة جودة الأسلاك الكهربائية.

 

 

إجراءات الاختبار وإجراءاته

تم تقييم معامل الاحتكاك (COF) ومقاومة التآكل لمعالجتين سطحيتين مختلفتين على الأسلاك النحاسية (السلك A والسلك B) بواسطة مقياس Tribometer Nanovea باستخدام وحدة التآكل الترددية الخطية. كرة Al₂O₃ (قطرها 6 مم) هي المادة المضادة المستخدمة في هذا التطبيق. تم فحص مسار التآكل باستخدام Nanovea مقياس عدم الاتصال ثلاثي الأبعاد. يتم تلخيص معلمات الاختبار في الجدول 1.

تم استخدام كرة Al₂O الملساء كمواد مضادة كمثال في هذه الدراسة. يمكن تطبيق أي مادة صلبة ذات شكل وتشطيب سطحي مختلفين باستخدام تركيبات مخصصة لمحاكاة حالة التطبيق الفعلية.

 

 

أجرى اختبار Nanovea الميكانيكي المجهز بقلم Rockwell C الماسي (نصف قطر 100 ميكرومتر) اختبارات خدش الحمل التدريجي على الأسلاك المطلية باستخدام وضع الخدش الصغير. يتم عرض معلمات اختبار الخدش وهندسة الأطراف في الجدول 2.
 

 

 

 

النتائج والمناقشة

ارتداء الأسلاك النحاسية:

يوضح الشكل 2 تطور COF للأسلاك النحاسية أثناء اختبارات التآكل. يُظهر السلك A COF ثابتًا بمقدار 0.4 ~ طوال اختبار التآكل بينما يُظهر السلك B COF من ~ 0.35 في أول 100 دورة ويزيد تدريجياً إلى ~ 0.4.

 

يقارن الشكل 3 مسارات اهتراء الأسلاك النحاسية بعد الاختبارات. قدم مقياس أبعاد عدم التلامس ثلاثي الأبعاد من Nanovea تحليلًا فائقًا للتشكيل التفصيلي لمسارات التآكل. يسمح بتحديد مباشر ودقيق لحجم مسار التآكل من خلال توفير فهم أساسي لآلية التآكل. يحتوي سطح السلك B على تلف كبير في مسار التآكل بعد 600 ثورة من اختبار التآكل. يُظهر العرض ثلاثي الأبعاد لمقياس التشكيل الجانبي إزالة الطبقة المعالجة السطحية من السلك B تمامًا مما أدى إلى تسريع عملية التآكل بشكل كبير. ترك هذا مسار تآكل مسطح على السلك B حيث تتعرض الركيزة النحاسية. قد يؤدي هذا إلى تقصير كبير في عمر المعدات الكهربائية حيث يتم استخدام السلك ب. بالمقارنة ، يُظهر السلك A تآكلًا خفيفًا نسبيًا يظهر من خلال مسار تآكل ضحل على السطح. لم تتم إزالة الطبقة المعالجة بالسطح على السلك A مثل الطبقة الموجودة على السلك B في نفس الظروف.

مقاومة خدش سطح الأسلاك النحاسية:

يوضح الشكل 4 مسارات الخدش على الأسلاك بعد الاختبار. تُظهر الطبقة الواقية للسلك A مقاومة جيدة للخدش. ينفصل عند حمولة تبلغ حوالي 12.6 نيوتن. وبالمقارنة ، فشلت الطبقة الواقية من السلك B عند حمل ~ 1.0 نيوتن.مثل هذا الاختلاف الكبير في مقاومة الخدش لهذه الأسلاك يساهم في أداء التآكل ، حيث يمتلك السلك A تعزيزًا كبيرًا ارتداء المقاومة. يوفر تطور القوة العادية و COF والعمق أثناء اختبارات الخدش الموضحة في الشكل 5 مزيدًا من المعلومات حول فشل الطلاء أثناء الاختبارات.

خاتمة

في هذه الدراسة الخاضعة للرقابة ، عرضنا مقياس تربومتر Nanovea الذي يجري تقييمًا كميًا لمقاومة التآكل للأسلاك النحاسية المعالجة بالسطح ، والاختبار الميكانيكي لـ Nanovea الذي يوفر تقييمًا موثوقًا لمقاومة خدش الأسلاك النحاسية. تلعب معالجة سطح الأسلاك دورًا مهمًا في الخواص الميكانيكية الميكانيكية خلال فترة حياتها. المعالجة المناسبة لسطح السلك مقاومة محسّنة للخدش والاحتكاك بشكل كبير ، وهو أمر بالغ الأهمية في أداء وعمر الأسلاك الكهربائية في البيئات القاسية.

يوفر مقياس الاحتكاك من Nanovea اختبارًا دقيقًا ومتكررًا للتآكل والاحتكاك باستخدام أوضاع دوارة وخطية متوافقة مع ISO و ASTM ، مع تآكل اختياري بدرجة حرارة عالية ، وتزييت ، ووحدات تآكل تريبو متوفرة في نظام واحد متكامل مسبقًا. تعد مجموعة Nanovea التي لا مثيل لها حلاً مثاليًا لتحديد النطاق الكامل للخصائص الترايبولوجية للطلاءات والأغشية والركائز الرقيقة أو السميكة أو الناعمة أو الصلبة.

الآن ، لنتحدث عن طلبك

تحميل ديناميكي ترايبولوجي

تحميل ديناميكي ترايبولوجي

مقدمة

يحدث التآكل في كل قطاع صناعي تقريبًا ويفرض تكاليف تبلغ ~ 0.75% من الناتج المحلي الإجمالي 1. تعتبر أبحاث الترايبولوجي أمرًا حيويًا في تحسين كفاءة الإنتاج وأداء التطبيق ، فضلاً عن الحفاظ على المواد والطاقة والبيئة. يحدث الاهتزاز والتذبذب حتمًا في مجموعة واسعة من التطبيقات الترايبولوجية. يعمل الاهتزاز الخارجي المفرط على تسريع عملية التآكل ويقلل من أداء الخدمة مما يؤدي إلى أعطال كارثية للأجزاء الميكانيكية.

تطبق مقاييس الحمل الميتة التقليدية أحمالًا عادية حسب أوزان الكتلة. لا تقصر تقنية التحميل هذه خيارات التحميل على حمل ثابت فحسب ، بل إنها تخلق أيضًا اهتزازات شديدة لا يمكن التحكم فيها عند الأحمال والسرعات العالية مما يؤدي إلى تقييمات محدودة وغير متسقة لسلوك التآكل. من المستحسن إجراء تقييم موثوق لتأثير التذبذب المتحكم فيه على سلوك تآكل المواد في البحث والتطوير ومراقبة الجودة في التطبيقات الصناعية المختلفة.

حمولة عالية رائدة من Nanovea تريبومتر يتمتع بقدرة تحميل قصوى تبلغ 2000 نيوتن مع نظام تحكم ديناميكي في الحمل. يمكّن نظام تحميل الهواء المضغوط الهوائي المتقدم المستخدمين من تقييم السلوك الاحتكاكي للمادة تحت الأحمال العادية العالية مع ميزة تخميد الاهتزازات غير المرغوب فيها التي تنشأ أثناء عملية التآكل. لذلك، يتم قياس الحمل مباشرة دون الحاجة إلى النوابض العازلة المستخدمة في التصميمات القديمة. تطبق وحدة التحميل المتأرجحة بمغناطيس كهربائي متوازي تذبذبًا يتم التحكم فيه جيدًا بالسعة المطلوبة حتى 20 نيوتن وتردد يصل إلى 150 هرتز.

يتم قياس الاحتكاك بدقة عالية مباشرة من القوة الجانبية المطبقة على الحامل العلوي. تتم مراقبة الإزاحة في الموقع، مما يوفر نظرة ثاقبة لتطور سلوك التآكل لعينات الاختبار. يمكن أيضًا إجراء اختبار التآكل تحت تحميل التذبذب المتحكم فيه في بيئات التآكل ودرجة الحرارة المرتفعة والرطوبة والتشحيم لمحاكاة ظروف العمل الحقيقية للتطبيقات الاحتكاكية. متكاملة عالية السرعة مقياس عدم الاتصال يقوم تلقائيًا بقياس شكل مسار التآكل وحجم التآكل في بضع ثوانٍ.

هدف القياس

في هذه الدراسة ، نعرض قدرة Nanovea T2000 Dynamic Load Tribometer في دراسة السلوك التراثي لعينات الطلاء والمعادن المختلفة في ظل ظروف تحميل متذبذبة محكومة.

 

إجراء الاختبار

تم تقييم السلوك الترابيولوجي ، على سبيل المثال معامل الاحتكاك ، COF ، ومقاومة التآكل لطلاء مقاوم للتآكل بسمك 300 ميكرومتر ومقارنته بواسطة Nanovea T2000 Tribometer بمقياس ترايب للحمل الميت التقليدي باستخدام دبوس على إعداد القرص باتباع ASTM G992.

تم تقييم العينات المطلية بالنحاس والتين المنفصلة مقابل كرة Al₂0₃ مقاس 6 مم تحت تذبذب متحكم فيه بواسطة وضع احتكاك التحميل الديناميكي لمقياس Tribometer Nanovea T2000.

تم تلخيص معلمات الاختبار في الجدول 1.

يقوم مقياس التآكل المدمج ثلاثي الأبعاد المزود بمستشعر خط بمسح مسار التآكل تلقائيًا بعد الاختبارات ، مما يوفر قياس حجم التآكل الأكثر دقة في ثوانٍ.

النتائج والمناقشة

 

نظام التحميل الهوائي مقابل نظام الحمولة الميتة

 

تتم مقارنة السلوك الترايبولوجي للطلاء المقاوم للاهتراء باستخدام Nanovea T2000 Tribometer مع مقياس الضغط التقليدي للحمل الميت (DL). يظهر تطور COF للطلاء في الشكل 2. نلاحظ أن الطلاء يعرض قيمة COF قابلة للمقارنة تبلغ 0.6 ~ أثناء اختبار التآكل. ومع ذلك ، تشير الأشكال الجانبية العشرين للمقطع العرضي في مواقع مختلفة من مسار التآكل في الشكل 3 إلى أن الطلاء تعرض لتآكل أكثر شدة في ظل نظام الحمل الميت.

تم إنشاء اهتزازات شديدة من خلال عملية التآكل لنظام الحمولة الميتة عند التحميل والسرعة العالية. يؤدي الضغط المركّز الهائل على وجه التلامس جنبًا إلى جنب مع سرعة الانزلاق العالية إلى خلق وزن كبير واهتزاز هيكل يؤدي إلى تآكل متسارع. يطبق مقياس تربومتر الحمل الميت التقليدي الحمل باستخدام أوزان الكتلة. هذه الطريقة موثوقة في أحمال التلامس المنخفضة في ظروف التآكل الخفيف ؛ ومع ذلك ، في ظل ظروف التآكل الشديدة في الأحمال والسرعات العالية ، يؤدي الاهتزاز الكبير إلى ارتداد الأوزان بشكل متكرر ، مما يؤدي إلى مسار تآكل غير متساوٍ مما يتسبب في تقييم ترايبولوجي غير موثوق به. معدل التآكل المحسوب هو 8.0 ± 2.4 × 10-4 مم 3 / نيوتن متر ، مما يدل على معدل تآكل مرتفع وانحراف معياري كبير.

صُمم مقياس الاحتكاك Nanovea T2000 بنظام تحكم ديناميكي في التحميل لتخميد التذبذبات. يطبق الحمل العادي بهواء مضغوط مما يقلل الاهتزاز غير المرغوب فيه الناتج أثناء عملية التآكل. بالإضافة إلى ذلك ، يضمن التحكم النشط في تحميل الحلقة المغلقة تطبيق حمل ثابت طوال اختبار التآكل ويتبع القلم تغيير عمق مسار التآكل. يتم قياس ملف مسار تآكل أكثر اتساقًا بشكل ملحوظ كما هو موضح في الشكل 3 أ ، مما يؤدي إلى معدل تآكل منخفض يبلغ 3.4 ± 0.5 × 10-4 مم 3 / نيوتن متر.

يؤكد تحليل مسار التآكل الموضح في الشكل 4 أن اختبار التآكل الذي تم إجراؤه بواسطة نظام تحميل الهواء المضغوط الهوائي لمقياس Nanovea T2000 يخلق مسار تآكل أكثر سلاسة واتساقًا مقارنةً بمقياس الحمل الميت التقليدي. بالإضافة إلى ذلك ، يقيس مقياس الانحراف Nanovea T2000 إزاحة القلم أثناء عملية التآكل مما يوفر مزيدًا من المعلومات حول تقدم سلوك التآكل في الموقع.

 

 

التذبذب المتحكم فيه عند اهتراء عينة النحاس

تمكّن وحدة المغناطيس الكهربائي ذات التحميل المتذبذب المتوازي في Nanovea T2000 Tribometer المستخدمين من التحقيق في تأثير السعة الخاضعة للتحكم وتذبذبات التردد على سلوك تآكل المواد. يتم تسجيل COF لعينات النحاس في الموقع كما هو موضح في الشكل 6. تُظهر عينة النحاس COF ثابتًا بمقدار 0.3 تقريبًا أثناء القياس الأول 330 ثورة ، مما يدل على تشكيل اتصال ثابت في الواجهة ومسار تآكل سلس نسبيًا . مع استمرار اختبار التآكل ، يشير تباين COF إلى حدوث تغيير في آلية التآكل. بالمقارنة ، تُظهر اختبارات التآكل تحت 5 N تذبذب يتم التحكم في السعة عند 50 N سلوك تآكل مختلف: يزيد COF على الفور في بداية عملية التآكل ، ويظهر تباينًا كبيرًا خلال اختبار التآكل. يشير هذا السلوك لـ COF إلى أن التذبذب المفروض في الحمل الطبيعي يلعب دورًا في حالة الانزلاق غير المستقرة عند جهة الاتصال.

يقارن الشكل 7 شكل مسار التآكل المقاس بواسطة مقياس التشكيل البصري المتكامل غير المتصل. يمكن ملاحظة أن عينة النحاس تحت سعة تذبذب مضبوطة تبلغ 5 نيوتن تظهر مسار تآكل أكبر بكثير بحجم 1.35 × 109 ميكرومتر 3 ، مقارنة بـ 5.03 × 108 ميكرومتر في ظل عدم وجود تذبذب مفروض. يعمل التذبذب المتحكم فيه على تسريع معدل التآكل بشكل كبير بعامل ~ 2.7 ، مما يُظهر التأثير الحاسم للتذبذب على سلوك التآكل.

 

التذبذب المتحكم فيه عند اهتراء طلاء TiN

يظهر في الشكل 8. COF ومسارات التآكل لعينة طلاء TiN. يُظهر طلاء TiN سلوكيات تآكل مختلفة بشكل كبير تحت التذبذب كما يتضح من تطور COF أثناء الاختبارات. يُظهر طلاء TiN ثابت COF بمقدار 0.3 ~ بعد فترة التشغيل في بداية اختبار التآكل ، بسبب التلامس الانزلاقي المستقر عند السطح البيني بين طلاء TiN وكرة Al₂O. ومع ذلك ، عندما يبدأ طلاء TiN بالفشل ، تخترق كرة Al₂O من خلال الطلاء وتنزلق ضد الركيزة الفولاذية الجديدة تحتها. يتم إنشاء كمية كبيرة من حطام طلاء TiN الصلب في مسار التآكل في نفس الوقت ، مما يؤدي إلى تآكل انزلاقي ثابت بجسمين إلى تآكل تآكل ثلاثي الأجسام. يؤدي مثل هذا التغيير في خصائص الزوجين الماديين إلى زيادة الاختلافات في تطور COF. يعمل التذبذب المفروض 5 N و 10 N على تسريع فشل طلاء TiN من حوالي 400 دورة إلى أقل من 100 دورة. تتفق مسارات التآكل الأكبر على عينات طلاء TiN بعد اختبارات التآكل تحت التذبذب المتحكم فيه مع مثل هذا التغيير في COF.

خاتمة

يتمتع نظام التحميل الهوائي المتقدم لمقياس Nanovea T2000 بميزة جوهرية كمثبط اهتزاز سريع بشكل طبيعي مقارنة بأنظمة الأحمال الميتة التقليدية. هذه الميزة التكنولوجية للأنظمة الهوائية صحيحة مقارنة بالأنظمة التي يتم التحكم فيها بالحمل والتي تستخدم مجموعة من المحركات المؤازرة والينابيع لتطبيق الحمل. تضمن هذه التقنية تقييم التآكل الموثوق به والتحكم فيه بشكل أفضل عند الأحمال العالية كما هو موضح في هذه الدراسة. بالإضافة إلى ذلك ، يمكن لنظام تحميل الحلقة المغلقة النشطة تغيير الحمل العادي إلى القيمة المطلوبة أثناء اختبارات التآكل لمحاكاة تطبيقات الحياة الواقعية التي تظهر في أنظمة الفرامل.

بدلاً من التأثير من ظروف الاهتزاز غير المتحكم فيها أثناء الاختبارات ، أظهرنا أن Nanovea T2000 Dynamic-Load Tribometer يمكّن المستخدمين من التقييم الكمي للسلوكيات الترايبولوجية للمواد في ظل ظروف تذبذب محكومة مختلفة. تلعب الاهتزازات دورًا مهمًا في سلوك التآكل لعينات طلاء المعدن والسيراميك.

توفر وحدة التحميل المتذبذب الكهرومغناطيسي المتوازي اهتزازات يتم التحكم فيها بدقة عند السعات والترددات المحددة ، مما يسمح للمستخدمين بمحاكاة عملية التآكل في ظل ظروف الحياة الواقعية عندما تكون الاهتزازات البيئية غالبًا عاملاً مهمًا. في حالة وجود تذبذبات مفروضة أثناء التآكل ، تُظهر عينات طلاء Cu و TiN زيادة كبيرة في معدل التآكل. يعد تطور معامل الاحتكاك وإزاحة القلم المقاس في الموقع مؤشرات مهمة لأداء المادة أثناء التطبيقات الترايبولوجية. يوفر مقياس التشكيل الجانبي غير المتصل ثلاثي الأبعاد أداة لقياس حجم التآكل بدقة وتحليل الشكل التفصيلي لمسارات التآكل في ثوانٍ ، مما يوفر مزيدًا من التبصر في الفهم الأساسي لآلية التآكل.

تم تجهيز T2000 بمحرك عزم دوران عالي الجودة وعالي الضبط ذاتيًا مع سرعة داخلية 20 بت ومشفّر موضع خارجي 16 بت. إنه يتيح لمقياس الترايبوميتر توفير نطاق لا مثيل له من سرعات الدوران من 0.01 إلى 5000 دورة في الدقيقة والتي يمكن أن تتغير في القفزات التدريجية أو بمعدلات مستمرة. على عكس الأنظمة التي تستخدم مستشعر عزم الدوران الموجود في الأسفل ، يستخدم Nanovea Tribometer أعلى خلية تحميل عالية الدقة لقياس قوى الاحتكاك بدقة وبشكل منفصل.

تقدم Nanovea Tribometer اختبارات تآكل واحتكاك دقيقة وقابلة للتكرار باستخدام أوضاع دوارة وخطية متوافقة مع ISO و ASTM (بما في ذلك اختبارات 4 كرات ، وغسالة دفع ، واختبارات كتلة على الحلقة) ، مع تآكل اختياري عالي درجة الحرارة ، وتزييت ، ووحدات تآكل تريبو متوفرة في واحد مسبق. -نظام متكامل. تعد مجموعة Nanovea T2000 التي لا مثيل لها حلاً مثاليًا لتحديد النطاق الكامل للخصائص الترايبولوجية للطلاء الرقيق أو السميك ، واللين أو الصلب ، والأغشية ، والركائز.

الآن ، لنتحدث عن طلبك

تأثير الرطوبة على طلاء DLC

أهمية تقييم التآكل على DLC في الرطوبة

تمتلك الطلاءات الكربونية الشبيهة بالماس (DLC) خصائص احتكاكية معززة، وهي مقاومة ممتازة للتآكل ومعامل احتكاك منخفض جدًا (COF). تضفي طلاءات DLC خصائص الماس عند ترسبها على مواد مختلفة. الخصائص الميكانيكية القبلية المواتية تجعل طلاءات DLC مفضلة في العديد من التطبيقات الصناعية، مثل أجزاء الطيران، وشفرات الحلاقة، وأدوات القطع المعدنية، والمحامل، ومحركات الدراجات النارية، والمزروعات الطبية.

تُظهر طلاءات DLC COF منخفضًا جدًا (أقل من 0.1) ضد الكرات الفولاذية في ظل ظروف فراغ وجفاف عالية12. ومع ذلك ، فإن طلاءات DLC حساسة لتغيرات الظروف البيئية ، وخاصة الرطوبة النسبية (RH)3. قد تؤدي البيئات ذات الرطوبة العالية وتركيز الأكسجين إلى زيادة كبيرة في COF4. يحاكي تقييم التآكل الموثوق به في الرطوبة الخاضعة للرقابة الظروف البيئية الواقعية لطلاءات DLC للتطبيقات الاحتكاكية. يختار المستخدمون أفضل طلاءات DLC للتطبيقات المستهدفة مع المقارنة المناسبة
من سلوكيات تآكل DLC المعرضة لرطوبة مختلفة.



هدف القياس

تعرض هذه الدراسة النانوفيا ثلاثي الأبعاد المجهز بوحدة تحكم في الرطوبة هو الأداة المثالية للتحقق من سلوك التآكل لطلاءات DLC عند رطوبة نسبية مختلفة.

 

 



إجراء الاختبار

تم تقييم مقاومة الاحتكاك والتآكل لطلاءات DLC بواسطة مقياس Nanovea Tribometer. تم تلخيص معلمات الاختبار في الجدول 1. جهاز التحكم في الرطوبة المتصل بغرفة Tribo يتحكم بدقة في الرطوبة النسبية (RH) بدقة ± 1%. تم فحص مسارات التآكل على طبقات DLC وندبات التآكل على كرات SiN باستخدام المجهر الضوئي بعد الاختبارات.

ملاحظة: يمكن تطبيق أي مادة كروية صلبة لمحاكاة أداء أدوات توصيل المواد المختلفة في ظل الظروف البيئية مثل مواد التشحيم أو درجات الحرارة المرتفعة.







النتائج والمناقشة

تعتبر طلاءات DLC رائعة للتطبيقات الترايبولوجية نظرًا لانخفاض الاحتكاك ومقاومة التآكل الفائقة. يُظهر احتكاك طلاء DLC سلوكًا يعتمد على الرطوبة كما هو موضح في الشكل 2. يُظهر طلاء DLC منخفضًا جدًا لـ COF يبلغ 0.05 تقريبًا طوال اختبار التآكل في ظروف جافة نسبيًا (10% RH). يُظهر طلاء DLC COF ثابتًا بمقدار 0.1 ~ أثناء الاختبار حيث يزيد RH إلى 30%. لوحظت مرحلة التشغيل الأولية لـ COF في الثورات الأولى لعام 2000 عندما يرتفع RH فوق 50%. يُظهر طلاء DLC حدًا أقصى لـ COF ~ 0.20 و ~ 0.26 و ~ 0.33 في RH من 50 و 70 و 90% ، على التوالي. بعد فترة التشغيل ، يظل COF المطلي بـ DLC ثابتًا عند ~ 0.11 و 0.13 و 0.20 في RH من 50 و 70 و 90% ، على التوالي.

 



يقارن الشكل 3 ندوب تآكل الكرة SiN ويقارن الشكل 4 مسارات تآكل طلاء DLC بعد اختبارات التآكل. كان قطر ندبة التآكل أصغر عندما تعرض طلاء DLC لبيئة ذات رطوبة منخفضة. تتراكم طبقة DLC للنقل على سطح كرة SiN أثناء عملية الانزلاق المتكررة على سطح التلامس. في هذه المرحلة ، ينزلق طلاء DLC مقابل طبقة النقل الخاصة به والتي تعمل كمواد تشحيم فعالة لتسهيل الحركة النسبية وتقييد المزيد من فقدان الكتلة الناجم عن تشوه القص. لوحظ فيلم نقل في ندبة التآكل لكرة SiN في بيئات منخفضة الرطوبة النسبية (على سبيل المثال 10% و 30%) ، مما أدى إلى عملية تآكل بطيئة على الكرة. تنعكس عملية التآكل هذه على شكل مسار التآكل لطلاء DLC كما هو موضح في الشكل 4. يُظهر طلاء DLC مسار تآكل أصغر في البيئات الجافة ، نظرًا لتشكيل فيلم نقل DLC ثابت في واجهة التلامس مما يقلل بشكل كبير من معدل الاحتكاك والتآكل .


 


خاتمة




تلعب الرطوبة دورًا حيويًا في الأداء القبلي لطلاءات DLC. يتمتع طلاء DLC بمقاومة تآكل محسنة بشكل كبير واحتكاك منخفض فائق في الظروف الجافة بسبب تكوين طبقة جرافيتية مستقرة منقولة إلى النظير المنزلق (كرة SiN في هذه الدراسة). ينزلق طلاء DLC على طبقة النقل الخاصة به، والتي تعمل بمثابة مادة تشحيم فعالة لتسهيل الحركة النسبية وكبح المزيد من فقدان الكتلة الناتج عن تشوه القص. لا يتم ملاحظة وجود فيلم على كرة SiN مع زيادة الرطوبة النسبية، مما يؤدي إلى زيادة معدل التآكل على كرة SiN وطلاء DLC.

يوفر مقياس Nanovea Tribometer اختبارًا متكررًا للتآكل والاحتكاك باستخدام أوضاع دوارة وخطية متوافقة مع ISO وASTM، مع وحدات رطوبة اختيارية متوفرة في نظام واحد متكامل مسبقًا. فهو يسمح للمستخدمين بمحاكاة بيئة العمل عند مستويات رطوبة مختلفة، مما يوفر للمستخدمين أداة مثالية للتقييم الكمي للسلوكيات الاحتكاكية للمواد في ظل ظروف عمل مختلفة.



تعرف على المزيد حول Nanovea Tribometer and Lab Service

1 C. Donnet، Surf. معطف. تكنول. 100-101 (1998) 180.

2 K.Miyoshi، B. Pohlchuck، KW Street، JS Zabinski، JH Sanders، AA Voevodin، RLC Wu، Wear 225–229 (1999) 65.

3 ر. جيلمور ، ر. هاويرت ، سيرف. معطف. تكنول. 133-134 (2000) 437.

4 R. Memming، HJ Tolle، PE Wierenga، طلاء صلب رقيق 143 (1986) 31


الآن ، لنتحدث عن طلبك

تقييم الاحتكاك بسرعات منخفضة للغاية

 

أهمية تقييم الاحتكاك عند السرعات المنخفضة

الاحتكاك هو القوة التي تقاوم الحركة النسبية للأسطح الصلبة التي تنزلق ضد بعضها البعض. عندما تحدث الحركة النسبية لهذين السطحين المتصلين ، فإن الاحتكاك في الواجهة يحول الطاقة الحركية إلى حرارة. يمكن أن تؤدي هذه العملية أيضًا إلى تآكل المادة وبالتالي تدهور أداء الأجزاء المستخدمة.
مع نسبة التمدد الكبيرة ، والمرونة العالية ، بالإضافة إلى خصائص مقاومة الماء ومقاومة التآكل ، يتم تطبيق المطاط على نطاق واسع في مجموعة متنوعة من التطبيقات والمنتجات التي يلعب فيها الاحتكاك دورًا مهمًا ، مثل إطارات السيارات وشفرات مساحات الزجاج الأمامي. نعال الأحذية وغيرها الكثير. اعتمادًا على طبيعة ومتطلبات هذه التطبيقات ، يكون الاحتكاك المرتفع أو المنخفض مع المواد المختلفة مطلوبًا. نتيجة لذلك ، يصبح القياس المتحكم به والموثوق لاحتكاك المطاط ضد الأسطح المختلفة أمرًا بالغ الأهمية.



هدف القياس

يتم قياس معامل الاحتكاك (COF) للمطاط مع المواد المختلفة بطريقة محكمة ومراقبه باستخدام جهاز Nanovea ثلاثي الأبعاد. في هذه الدراسة، نود أن نعرض قدرة Nanovea Tribometer على قياس ثاني أكسيد الكربون لمواد مختلفة بسرعات منخفضة للغاية.




النتائج والمناقشة

تم تقييم معامل الاحتكاك (COF) للكرات المطاطية (قطر 6 مم ، مطحنة المطاط) على ثلاث مواد (الفولاذ المقاوم للصدأ SS 316 ، Cu 110 وأكريليك اختياري) بواسطة Nanovea Tribometer. تم صقل العينات المعدنية المختبرة ميكانيكيًا حتى تشطيب سطح يشبه المرآة قبل القياس. أدى التشوه الطفيف للكرة المطاطية تحت الحمل الطبيعي المطبق إلى حدوث تلامس للمنطقة ، مما يساعد أيضًا على تقليل تأثير عدم تجانس أو عدم تجانس سطح العينة على قياسات COF. تم تلخيص معلمات الاختبار في الجدول 1.


 

يظهر الشكل COF للكرة المطاطية ضد مواد مختلفة بأربع سرعات مختلفة. 2 ، ومتوسط COFs المحسوب تلقائيًا بواسطة البرنامج يتم تلخيصه ومقارنته في الشكل 3. ومن المثير للاهتمام أن العينات المعدنية (SS 316 و Cu 110) تظهر زيادة كبيرة في COFs حيث تزداد سرعة الدوران من قيمة منخفضة جدًا تبلغ 0.01 دورة في الدقيقة إلى 5 rpm - تزداد قيمة COF للزوج المطاطي / SS 316 من 0.29 إلى 0.8 ، ومن 0.65 إلى 1.1 للزوج المطاطي / Cu 110. هذه النتيجة تتفق مع النتائج الواردة من العديد من المختبرات. على النحو الذي اقترحه Grosch4 يتم تحديد احتكاك المطاط بشكل أساسي من خلال آليتين: (1) الالتصاق بين المطاط والمواد الأخرى ، و (2) فقدان الطاقة بسبب تشوه المطاط الناجم عن قسوة السطح. شالماش5 لوحظ وجود موجات من انفصال المطاط عن مادة العداد عبر الواجهة بين الكرات المطاطية الناعمة والسطح الصلب. يمكن أن تفسر قوة تقشير المطاط من سطح الركيزة ومعدل موجات الانفصال الاختلاف في الاحتكاك بسرعات مختلفة أثناء الاختبار.

في المقارنة ، يعرض الزوجان المطاطي / الأكريليكي نسبة عالية من COF بسرعات دوران مختلفة. تزيد قيمة COF قليلاً من ~ 1.02 إلى ~ 1.09 مع زيادة سرعة الدوران من 0.01 دورة في الدقيقة إلى 5 دورة في الدقيقة. من المحتمل أن يُعزى هذا المستوى المرتفع من COF إلى الترابط الكيميائي المحلي الأقوى عند وجه التلامس المتكون أثناء الاختبارات.



 
 

 

 




خاتمة



في هذه الدراسة ، أظهرنا أنه عند السرعات المنخفضة للغاية ، يُظهر المطاط سلوكًا احتكاكًا غريبًا - يزداد احتكاكه مع سطح صلب مع زيادة سرعة الحركة النسبية. يظهر المطاط احتكاكًا مختلفًا عندما ينزلق على مواد مختلفة. يمكن لمقياس Nanovea Tribometer تقييم الخصائص الاحتكاكية للمواد بطريقة خاضعة للرقابة والمراقبة بسرعات مختلفة ، مما يسمح للمستخدمين بتحسين الفهم الأساسي لآلية احتكاك المواد واختيار أفضل زوج من المواد لتطبيقات الهندسة الترايبولوجية المستهدفة.

يوفر Nanovea Tribometer اختبارات تآكل واحتكاك دقيقة وقابلة للتكرار باستخدام أوضاع دوارة وخطية متوافقة مع ISO و ASTM ، مع تآكل اختياري عالي الحرارة ، ووحدات تزييت وتآكل تريبو متوفرة في نظام واحد متكامل مسبقًا. إنه قادر على التحكم في مرحلة الدوران بسرعات منخفضة للغاية تصل إلى 0.01 دورة في الدقيقة ومراقبة تطور الاحتكاك في الموقع. تعد مجموعة Nanovea التي لا مثيل لها حلاً مثاليًا لتحديد النطاق الكامل للخصائص الترايبولوجية للطلاءات والأغشية والركائز الرقيقة أو السميكة أو الناعمة أو الصلبة.

الآن ، لنتحدث عن طلبك

ترايبولوجي البوليمرات

مقدمة

تم استخدام البوليمرات على نطاق واسع في مجموعة متنوعة من التطبيقات وأصبحت جزءًا لا غنى عنه في الحياة اليومية. لعبت البوليمرات الطبيعية مثل العنبر والحرير والمطاط الطبيعي دورًا أساسيًا في تاريخ البشرية. يمكن تحسين عملية تصنيع البوليمرات الاصطناعية لتحقيق خصائص فيزيائية فريدة مثل المتانة ، والمرونة اللزجة ، والتشحيم الذاتي ، وغيرها الكثير.

أهمية احتكاك البوليمرات

تستخدم البوليمرات بشكل شائع للتطبيقات الترايبولوجية ، مثل الإطارات والمحامل وسيور النقل.
تحدث آليات تآكل مختلفة اعتمادًا على الخصائص الميكانيكية للبوليمر ، وظروف التلامس ، وخصائص الحطام أو فيلم النقل المتكون أثناء عملية التآكل. للتأكد من أن البوليمرات تمتلك مقاومة تآكل كافية في ظل ظروف الخدمة ، من الضروري إجراء تقييم ترايبولوجي موثوق وقابل للقياس الكمي. يسمح لنا التقييم الترايبولوجي بإجراء مقارنة كمية لسلوكيات التآكل للبوليمرات المختلفة بطريقة خاضعة للرقابة والمراقبة لتحديد المادة المرشحة للتطبيق المستهدف.

يوفر Nanovea Tribometer اختبار التآكل والاحتكاك القابل للتكرار باستخدام أوضاع الدوران والخطية المتوافقة مع ISO و ASTM ، مع وحدات التآكل والتشحيم الاختيارية لدرجات الحرارة العالية المتاحة في نظام واحد متكامل مسبقًا. يتيح هذا النطاق الذي لا مثيل له للمستخدمين محاكاة بيئات العمل المختلفة للبوليمرات بما في ذلك الإجهاد المركّز والتآكل ودرجة الحرارة المرتفعة ، إلخ.

هدف القياس

في هذه الدراسة، أظهرنا أن النانوفيا ثلاثي الأبعاد هي أداة مثالية لمقارنة الاحتكاك ومقاومة التآكل للبوليمرات المختلفة بطريقة كمية ومراقبة بشكل جيد.

إجراء الاختبار

تم تقييم معامل الاحتكاك (COF) ومقاومة التآكل للبوليمرات الشائعة المختلفة بواسطة مقياس Nanovea Tribometer. تم استخدام كرة Al2O3 كمادة مضادة (دبوس، عينة ثابتة). تم قياس مسارات التآكل على البوليمرات (عينات دوارة ديناميكية) باستخدام أ مقياس عدم الاتصال ثلاثي الأبعاد والمجهر الضوئي بعد انتهاء الاختبارات. تجدر الإشارة إلى أنه يمكن استخدام جهاز استشعار بالمنظار غير متصل لقياس عمق اختراق الدبوس للعينة الديناميكية أثناء اختبار التآكل كخيار. يتم تلخيص معلمات الاختبار في الجدول 1. تم تقييم معدل التآكل، K، باستخدام الصيغة K=Vl(Fxs)، حيث V هو الحجم البالي، وF هو الحمل العادي، وs هي مسافة الانزلاق.

يرجى ملاحظة أنه تم استخدام كرات Al2O3 كمادة مضادة في هذه الدراسة. يمكن استبدال أي مادة صلبة لمحاكاة أداء عينتين عن كثب في ظل ظروف التطبيق الفعلية.

النتائج والمناقشة

يعد معدل التآكل عاملاً حيويًا لتحديد عمر خدمة المواد ، بينما يلعب الاحتكاك دورًا مهمًا أثناء التطبيقات الترايبولوجية. يقارن الشكل 2 تطور COF للبوليمرات المختلفة مقابل كرة Al2O3 أثناء اختبارات التآكل. يعمل COF كمؤشر على وقت حدوث الفشل ودخول عملية التآكل مرحلة جديدة. من بين البوليمرات المختبرة ، يحافظ HDPE على أدنى COF ثابت يبلغ 0.15 تقريبًا طوال اختبار التآكل. يشير COF السلس إلى تكوين اتصال ثلاثي ثابت.

يقارن الشكل 3 والشكل 4 مسارات التآكل لعينات البوليمر بعد أن يتم قياس الاختبار بواسطة المجهر الضوئي. يحدد مقياس التآكل ثلاثي الأبعاد في الموقع بدقة حجم التآكل لعينات البوليمر ، مما يجعل من الممكن حساب معدلات التآكل بدقة 0.0029 و 0.0020 و 0.0032 متر مكعب / نيوتن متر على التوالي. بالمقارنة ، تُظهر عينة CPVC أعلى معدل تآكل قدره 0.1121m3 / N · m. توجد ندبات تآكل متوازية عميقة في مسار التآكل في أنابيب CPVC.

خاتمة

تلعب مقاومة التآكل للبوليمرات دورًا حيويًا في أداء خدمتهم. في هذه الدراسة ، أوضحنا أن Nanovea Tribometer يقيم معامل الاحتكاك ومعدل التآكل للبوليمرات المختلفة في
بطريقة جيدة التحكم والكمية. يُظهر HDPE أدنى COF بحوالي 0.15 بين البوليمرات المختبرة. تمتلك عينات HDPE و Nylon 66 و Polypropylene معدلات تآكل منخفضة تبلغ 0.0029 و 0.0020 و 0.0032 متر مكعب / نيوتن متر على التوالي. إن الجمع بين الاحتكاك المنخفض ومقاومة التآكل الكبيرة يجعل HDPE مرشحًا جيدًا لتطبيقات البوليمر الترايبولوجي.

يتيح مقياس التشكيل الجانبي ثلاثي الأبعاد غير المتصل في الموقع قياسًا دقيقًا لحجم التآكل ويوفر أداة لتحليل الشكل التفصيلي لمسارات التآكل ، مما يوفر مزيدًا من التبصر في الفهم الأساسي لآليات التآكل

الآن ، لنتحدث عن طلبك

قياس منحنى Stribeck المستمر باستخدام Pin-on-Disk Tribometer

مقدمة:

عند تطبيق التزييت لتقليل تآكل / احتكاك الأسطح المتحركة ، يمكن أن يتحول ملامس التزييت في الواجهة من عدة أنظمة مثل تزييت الحدود والتشحيم الهيدروديناميكي. يلعب سمك الفيلم السائل دورًا رئيسيًا في هذه العملية ، ويتم تحديده بشكل أساسي من خلال لزوجة المائع والحمل المطبق على الواجهة والسرعة النسبية بين السطحين. يظهر كيف تتفاعل أنظمة التزليق مع الاحتكاك فيما يسمى بمنحنى Stribeck [1-4].

نعرض في هذه الدراسة لأول مرة القدرة على قياس منحنى ستريبك المستمر. باستخدام النانوفيا ثلاثي الأبعاد تحكم متقدم في السرعة بدون خطوات، من 15000 إلى 0.01 دورة في الدقيقة، في غضون 10 دقائق، يوفر البرنامج مباشرة منحنى Stribeck الكامل. يتطلب الإعداد الأولي البسيط فقط من المستخدمين تحديد وضع المنحدر الأسي وإدخال السرعات الأولية والنهائية، بدلاً من الاضطرار إلى إجراء اختبارات متعددة أو برمجة إجراء تدريجي بسرعات مختلفة تتطلب تجميع البيانات لقياسات منحنى ستريبك التقليدية. يوفر هذا التقدم بيانات دقيقة خلال تقييم نظام التشحيم ويقلل الوقت والتكلفة بشكل كبير. يُظهر الاختبار إمكانية كبيرة لاستخدامها في تطبيقات الهندسة الصناعية المختلفة.

 

اضغط لتقرأ المزيد

مقارنة قطرة العين المرطبة باستخدام Nanovea T50 Tribometer

أهمية اختبار حلول قطرة العين

تُستخدم محاليل قطرة العين للتخفيف من الأعراض التي تسببها مجموعة من مشاكل العين. على سبيل المثال ، يمكن استخدامها لعلاج تهيج العين الطفيف (مثل الجفاف والاحمرار) ، أو تأخير ظهور الجلوكوما أو علاج الالتهابات. تُستخدم محاليل قطرة العين التي تُباع دون وصفة طبية بشكل أساسي لعلاج الجفاف. يمكن مقارنة فعاليتها في ترطيب العين وقياسها بمعامل اختبار الاحتكاك.
 
يمكن أن ينتج جفاف العين عن مجموعة واسعة من العوامل ، على سبيل المثال ، إجهاد عين الكمبيوتر أو التواجد في الهواء الطلق في ظروف الطقس القاسية. تساعد قطرات الترطيب الجيدة في الحفاظ على الرطوبة على السطح الخارجي للعينين وتكميلها. يعمل هذا على تخفيف الانزعاج والحرقان والتهيج والاحمرار المرتبط بجفاف العين. من خلال قياس معامل الاحتكاك (COF) لمحلول قطرة العين ، يمكن تحديد كفاءة التشحيم وكيف يمكن مقارنته بالحلول الأخرى.

هدف القياس

في هذه الدراسة ، تم قياس معامل الاحتكاك (COF) لثلاثة محاليل تزييت مختلفة لقطرة العين باستخدام إعداد الدبوس على القرص على Nanovea T50 Tribometer.

إجراءات الاختبار وإجراءاته

تم وضع دبوس كروي بقطر 6 مم مصنوع من الألومينا على شريحة زجاجية مع كل محلول قطرة عين يعمل كمواد تشحيم بين السطحين. تم تلخيص معلمات الاختبار المستخدمة لجميع التجارب في الجدول 1 أدناه.

النتائج والمناقشة

تم جدولة الحد الأقصى والأدنى والمتوسط لقيم الاحتكاك للحلول الثلاثة المختلفة لقطرة العين التي تم اختبارها في الجدول 2 أدناه. تم توضيح الرسوم البيانية COF ضد الثورات لكل محلول قطرة عين في الأشكال 2-4. ظل COF أثناء كل اختبار ثابتًا نسبيًا لمعظم مدة الاختبار الإجمالية. كان للعينة A أدنى متوسط لـ COF مما يشير إلى أن لديها أفضل خصائص التشحيم.

 

خاتمة

في هذه الدراسة نعرض قدرة Nanovea T50 Tribometer في قياس معامل الاحتكاك لثلاثة محاليل قطرة للعين. بناءً على هذه القيم ، نوضح أن العينة A كانت ذات معامل احتكاك أقل وبالتالي تعرض تزييتًا أفضل مقارنةً بالعينتين الأخريين.

نانوفيا ترايبومتر يقدم اختبارًا دقيقًا ومتكررًا للتآكل والاحتكاك باستخدام وحدات دوارة وخطية متوافقة مع ISO وASTM. كما أنه يوفر أيضًا وحدات اختيارية للتآكل والتشحيم والتآكل الثلاثي عند درجة حرارة عالية متوفرة في نظام واحد متكامل مسبقًا. يتيح هذا التنوع للمستخدمين محاكاة بيئة التطبيق الحقيقية بشكل أفضل وتحسين الفهم الأساسي لآلية التآكل والخصائص الاحتكاكية للمواد المختلفة.

الآن ، لنتحدث عن طلبك