الولايات المتحدة الأمريكية / العالمية: 9292-461-949-1+
أوروبا: 794-3052-011-39+
تراسل معنا

ارتداء واحتكاك حزام البوليمر باستخدام الترايبومتر

أحزمة بوليمر

ارتدي واحتكاك باستخدام جهاز ثلاثي الأبعاد

أُعدت بواسطة

دوانجي لي ، دكتوراه

مقدمة

ينقل محرك الحزام الطاقة ويتتبع الحركة النسبية بين اثنين أو أكثر من أعمدة الدوران. كحل بسيط وغير مكلف مع الحد الأدنى من الصيانة ، تُستخدم محركات السيور على نطاق واسع في مجموعة متنوعة من التطبيقات ، مثل المناشير ، ومناشير الخشب ، والدرسات ، ومنفاخ الصوامع ، والناقلات. يمكن لمحركات الحزام حماية الماكينة من الحمل الزائد وكذلك الرطوبة وعزل الاهتزازات.

أهمية تقييم الارتداء للقيادة ذات الأحزمة

الاحتكاك والتآكل أمر لا مفر منه للأحزمة في آلة يحركها حزام. يضمن الاحتكاك الكافي نقلًا فعالًا للطاقة دون الانزلاق ، ولكن الاحتكاك المفرط قد يؤدي إلى تآكل الحزام بسرعة. تحدث أنواع مختلفة من الاهتراء مثل التعب والتآكل والاحتكاك أثناء تشغيل محرك الحزام. من أجل إطالة عمر الحزام وتقليل التكلفة والوقت على إصلاح واستبدال الحزام ، فإن التقييم الموثوق لأداء تآكل الأحزمة أمر مرغوب فيه لتحسين عمر الحزام وكفاءة الإنتاج وأداء التطبيق. القياس الدقيق لمعامل الاحتكاك ومعدل التآكل للحزام يسهل البحث والتطوير ومراقبة الجودة لإنتاج الحزام.

هدف القياس

في هذه الدراسة ، قمنا بمحاكاة ومقارنة سلوكيات ارتداء الأحزمة ذات القوام السطحي المختلف لعرض قدرة نانوفيا T2000 Tribometer في محاكاة عملية تآكل الحزام بطريقة محكومة ومراقب.

نانوفيا

T2000

إجرائات الإمتحان

تم تقييم معامل الاحتكاك ، COF ، ومقاومة التآكل لحزامين مع خشونة السطح المختلفة والملمس من خلال نانوفيا حمل زائد ثلاثي الأبعاد باستخدام وحدة التآكل الترددي الخطي. تم استخدام كرة فولاذية 440 (قطرها 10 مم) كمادة مضادة. تم فحص خشونة السطح ومسار التآكل باستخدام جهاز متكامل مقياس عدم الاتصال ثلاثي الأبعاد. معدل التآكل، ك، باستخدام الصيغة K = Vl (Fxs)، أين الخامس هو الحجم البالي ، F هو الحمل العادي و س هي المسافة المنزلقة.

 

يرجى ملاحظة أنه تم استخدام نظير كرة فولاذية 440 ملساء كمثال في هذه الدراسة ، يمكن تطبيق أي مادة صلبة ذات أشكال مختلفة وتشطيب سطحي باستخدام تركيبات مخصصة لمحاكاة حالة التطبيق الفعلية.

النتائج والمناقشة

يتميز الحزام المحكم والحزام الأملس بخشونة سطحية Ra تبلغ 33.5 و 8.7 um ، على التوالي ، وفقًا لمحات السطح التي تم تحليلها والتي تم التقاطها باستخدام نانوفيا 3D بروفايل بصري عدم الاتصال. تم قياس COF ومعدل التآكل للحزامين المختبرين عند 10 N و 100 N ، على التوالي ، لمقارنة سلوك تآكل الأحزمة عند الأحمال المختلفة.

شكل 1 يوضح تطور COF للأحزمة أثناء اختبارات التآكل. تُظهر الأحزمة ذات القوام المختلف سلوكيات تآكل مختلفة إلى حد كبير. من المثير للاهتمام أنه بعد فترة التشغيل التي يزداد فيها COF تدريجيًا ، يصل الحزام المحكم إلى COF أقل من 0.5 ~ في كلا الاختبارين اللذين تم إجراؤهما باستخدام أحمال 10 N و 100 N. يُظهر الحمل البالغ 10 نيوتن COF أعلى بكثير من ~ 1.4 عندما يصبح COF مستقرًا ويحتفظ فوق هذه القيمة لبقية الاختبار. تم اختبار الحزام الناعم الذي تم اختباره تحت حمولة 100 N سريعًا بواسطة الكرة الفولاذية 440 وشكل مسار تآكل كبير. لذلك توقف الاختبار عند 220 دورة.

شكل ١: تطور COF للأحزمة بأحمال مختلفة.

يقارن الشكل 2 صور مسار التآكل ثلاثية الأبعاد بعد الاختبارات عند 100 N. يوفر مقياس NANOVEA 3D غير المتصل بعدم التلامس أداة لتحليل الشكل التفصيلي لمسارات التآكل ، مما يوفر مزيدًا من التبصر في الفهم الأساسي لآلية التآكل.

الجدول 1: نتيجة تحليل مسار التآكل.

الشكل 2:  عرض ثلاثي الأبعاد للحزامين
بعد الاختبارات عند 100 N.

يسمح ملف مسار التآكل ثلاثي الأبعاد بتحديد مباشر ودقيق لحجم مسار التآكل المحسوب بواسطة برنامج التحليل المتقدم كما هو موضح في الجدول 1. في اختبار التآكل لـ 220 دورة ، يحتوي الحزام الناعم على مسار تآكل أكبر وأعمق بكثير بحجم 75.7 مم 3 ، مقارنة بحجم تآكل 14.0 مم 3 للحزام المحكم بعد اختبار تآكل 600 ثورة. يؤدي الاحتكاك العالي للحزام الناعم ضد الكرة الفولاذية إلى معدل تآكل أعلى بمقدار 15 ضعفًا مقارنة بالحزام المحكم.

 

من المحتمل أن يكون هذا الاختلاف الكبير في COF بين الحزام المحكم والحزام الأملس مرتبطًا بحجم منطقة التلامس بين الحزام والكرة الفولاذية ، مما يؤدي أيضًا إلى أداء التآكل المختلف. يوضح الشكل 3 مسارات التآكل للحزامين تحت المجهر البصري. يتوافق فحص مسار التآكل مع الملاحظة الخاصة بتطور COF: الحزام المحكم ، الذي يحافظ على انخفاض COF يبلغ 0.5 تقريبًا ، لا يُظهر أي علامة على التآكل بعد اختبار التآكل تحت حمولة 10 N. يظهر الحزام الناعم تآكلًا بسيطًا المسار عند 10 N. تخلق اختبارات التآكل التي تم إجراؤها عند 100 N مسارات تآكل أكبر بشكل كبير على كل من الأحزمة ذات النسيج الناعم والسلس ، وسيتم حساب معدل التآكل باستخدام ملفات التعريف ثلاثية الأبعاد كما سيتم مناقشته في الفقرة التالية.

الشكل 3:  قم بارتداء المسارات تحت المجهر الضوئي.

خاتمة

في هذه الدراسة ، عرضنا قدرة NANOVEA T2000 Tribometer في تقييم معامل الاحتكاك ومعدل تآكل الأحزمة بطريقة كمية وجيدة التحكم. يلعب نسيج السطح دورًا مهمًا في مقاومة الاحتكاك والتآكل للأحزمة أثناء أداء الخدمة. يُظهر الحزام المحكم معامل احتكاك ثابتًا يبلغ 0.5 تقريبًا ويمتلك عمرًا طويلاً ، مما يؤدي إلى تقليل الوقت والتكلفة في إصلاح أو استبدال الأداة. وبالمقارنة ، فإن الاحتكاك المفرط للحزام الأملس ضد الكرة الفولاذية يؤدي إلى تآكل الحزام بسرعة. علاوة على ذلك ، يعتبر التحميل على الحزام عاملاً حيويًا في مدة خدمته. يخلق الحمل الزائد احتكاكًا عاليًا جدًا ، مما يؤدي إلى تسريع تآكل الحزام.

يوفر NANOVEA T2000 Tribometer اختبارًا دقيقًا وقابلًا للتكرار للتآكل والاحتكاك باستخدام أوضاع الدوران والخطية المتوافقة مع ISO و ASTM ، مع تآكل اختياري بدرجة حرارة عالية ، ووحدات تزييت وتآكل ثلاثي متوفرة في نظام واحد متكامل مسبقًا. نانوفيا النطاق الذي لا مثيل له هو الحل المثالي لتحديد النطاق الكامل للخصائص الترايبولوجية للطلاءات الرقيقة أو السميكة أو الناعمة أو القاسية والأغشية والركائز.

الآن ، لنتحدث عن طلبك

تعليق