الولايات المتحدة الأمريكية / العالمية: 9292-461-949-1+
أوروبا: 794-3052-011-39+
تراسل معنا

التصنيف: اختبار بروفيلوميتري

 

أداء كشط ورق الصنفرة باستخدام الترايبومتر

أداء احتكاك ورق الصنفرة

استخدام ثلاثي الأبعاد

أُعدت بواسطة

دوانجي لي ، دكتوراه

مقدمة

يتكون ورق الصنفرة من جزيئات كاشطة يتم لصقها على وجه واحد من الورق أو القماش. يمكن استخدام مواد كاشطة مختلفة للجسيمات ، مثل العقيق وكربيد السيليكون وأكسيد الألومنيوم والماس. يتم تطبيق ورق الصنفرة على نطاق واسع في مجموعة متنوعة من القطاعات الصناعية لإنشاء تشطيبات سطحية محددة على الخشب والمعدن والجدران الجافة. غالبًا ما يعملون تحت ضغط عالٍ يتم تطبيقه يدويًا أو أدوات كهربائية.

أهمية تقييم أداء احتكاك ورق الصنفرة

غالبًا ما يتم تحديد فعالية ورق الصنفرة من خلال أداء التآكل في ظل ظروف مختلفة. يحدد حجم الحبيبات ، أي حجم الجسيمات الكاشطة المدمجة في ورق الصنفرة ، معدل التآكل وحجم الخدش للمادة التي يتم صقلها. تحتوي أوراق الصنفرة ذات الأرقام الحبيبية العالية على جزيئات أصغر ، مما ينتج عنه سرعات صنفرة أقل وتشطيبات سطح أكثر دقة. يمكن أن يكون لأوراق الرمل التي تحمل نفس عدد الحبيبات ولكنها مصنوعة من مواد مختلفة سلوكيات غير متشابهة في الظروف الجافة أو الرطبة. هناك حاجة إلى تقييمات ترايبولوجية موثوقة للتأكد من أن ورق الصنفرة المصنوع يمتلك السلوك الكاشط المرغوب فيه. تسمح هذه التقييمات للمستخدمين بإجراء مقارنة كمية لسلوكيات التآكل لأنواع مختلفة من ورق الصنفرة بطريقة خاضعة للرقابة والمراقبة من أجل اختيار أفضل مرشح للتطبيق المستهدف.

هدف القياس

في هذه الدراسة ، نعرض قدرة NANOVEA Tribometer على التقييم الكمي لأداء التآكل لعينات ورق الصنفرة المختلفة في الظروف الجافة والرطبة.

نانوفيا

T2000

إجرائات الإمتحان

تم تقييم معامل الاحتكاك (COF) وأداء التآكل لنوعين من ورق الصنفرة بواسطة مقياس Tribometer NANOVEA T100. تم استخدام كرة من الفولاذ المقاوم للصدأ 440 كمادة مضادة. تم فحص ندوب تآكل الكرة بعد كل اختبار تآكل باستخدام NANOVEA ملف التعريف البصري ثلاثي الأبعاد غير المتصل لضمان قياسات دقيقة لفقدان الحجم.

يرجى ملاحظة أنه تم اختيار كرة من الفولاذ المقاوم للصدأ 440 كمواد مضادة لإنشاء دراسة مقارنة ولكن يمكن استبدال أي مادة صلبة لمحاكاة حالة تطبيق مختلفة.

نتائج الاختبار والمناقشة

يوضح الشكل 1 مقارنة COF لورق الصنفرة 1 و 2 في ظل الظروف البيئية الجافة والرطبة. يُظهر ورق الصنفرة 1 ، في ظل الظروف الجافة ، COF قدره 0.4 في بداية الاختبار والذي يتناقص تدريجياً ويستقر عند 0.3. في ظل الظروف الرطبة ، تُظهر هذه العينة متوسط COF أقل من 0.27. في المقابل ، تُظهر نتائج COF للعينة 2 COF جافًا قدره 0.27 و COF رطبًا ~ 0.37. 

يرجى ملاحظة أن التذبذب في البيانات لجميع مخططات COF كان ناتجًا عن الاهتزازات الناتجة عن حركة انزلاق الكرة على أسطح ورق الصنفرة الخشنة.

شكل ١: تطور COF أثناء اختبارات التآكل.

يلخص الشكل 2 نتائج تحليل ندبة التآكل. تم قياس ندوب التآكل باستخدام مجهر بصري وملف تعريف بصري NANOVEA 3D Non-Contact. الشكل 3 والشكل 4 يقارنان ندوب التآكل لكرات SS440 البالية بعد اختبارات التآكل على ورق الصنفرة 1 و 2 (الظروف الرطبة والجافة). كما هو مبين في الشكل 4 ، يلتقط NANOVEA Optical Profiler بدقة التضاريس السطحية للكرات الأربع ومسارات التآكل الخاصة بكل منها والتي تمت معالجتها بعد ذلك باستخدام برنامج NANOVEA Mountains Advanced Analysis لحساب فقد الحجم ومعدل التآكل. على المجهر وصورة الملف الشخصي للكرة ، يمكن ملاحظة أن الكرة المستخدمة في اختبار الصنفرة 1 (الجاف) أظهرت ندبة تآكل أكبر مقارنة بالآخرين مع فقد حجمها 0.313 مم3. في المقابل ، كان فقد الحجم لورق الصنفرة 1 (مبلل) 0.131 مم3. بالنسبة إلى ورق الصنفرة 2 (الجاف) ، كان فقد الحجم 0.163 مم3 وبالنسبة لورق الصنفرة 2 (الرطب) ، زاد فقد الحجم إلى 0.237 مم3.

علاوة على ذلك ، من المثير للاهتمام ملاحظة أن COF لعبت دورًا مهمًا في أداء الكشط لأوراق الصنفرة. أظهر ورق الصنفرة 1 نسبة أعلى من COF في حالة الجفاف ، مما أدى إلى معدل تآكل أعلى للكرة SS440 المستخدمة في الاختبار. وبالمقارنة ، أدى ارتفاع COF الخاص بورق الصنفرة 2 في الحالة الرطبة إلى معدل تآكل أعلى. يتم عرض مسارات التآكل لأوراق الصنفرة بعد القياسات في الشكل 5.

يدعي كل من ورق الصنفرة 1 و2 أنه يعمل في البيئات الجافة والرطبة. ومع ذلك، فقد أظهروا أداءً مختلفًا بشكل كبير في التآكل في الظروف الجافة والرطبة. نانوفيا مقاييس الحرارة توفير إمكانات تقييم التآكل القابلة للقياس الكمي والموثوقة والتي تضمن تقييمات التآكل القابلة للتكرار. علاوة على ذلك، فإن قدرة قياس COF في الموقع تسمح للمستخدمين بربط المراحل المختلفة لعملية التآكل مع تطور COF، وهو أمر بالغ الأهمية في تحسين الفهم الأساسي لآلية التآكل والخصائص القبلية لورق الصنفرة

الشكل 2: ارتداء حجم ندبة من الكرات ومتوسط COF تحت ظروف مختلفة.

الشكل 3: ارتداء ندبات الكرات بعد الاختبارات.

الشكل 4: شكل ثلاثي الأبعاد لندبات التآكل على الكرات.

الشكل 5: قم بارتداء المسارات على ورق الصنفرة تحت ظروف مختلفة.

خاتمة

تم تقييم أداء التآكل لنوعين من ورق الصنفرة من نفس عدد الحبيبات تحت ظروف جافة ورطبة في هذه الدراسة. تلعب شروط خدمة ورق الصنفرة دورًا مهمًا في فعالية أداء العمل. يتميز ورق الصنفرة 1 بسلوك تآكل أفضل في الظروف الجافة ، بينما كان أداء ورق الصنفرة 2 أفضل في الظروف الرطبة. يعد الاحتكاك أثناء عملية الصنفرة عاملاً مهمًا يجب مراعاته عند تقييم أداء التآكل. يقيس NANOVEA Optical Profiler بدقة التشكل ثلاثي الأبعاد لأي سطح ، مثل ندوب التآكل على الكرة ، مما يضمن تقييمًا موثوقًا لأداء تآكل ورق الصنفرة في هذه الدراسة. يقيس NANOVEA Tribometer معامل الاحتكاك في الموقع أثناء اختبار التآكل ، مما يوفر نظرة ثاقبة على المراحل المختلفة لعملية التآكل. كما يوفر أيضًا اختبار التآكل والاحتكاك المتكرر باستخدام أوضاع الدوران والخطية المتوافقة مع ISO و ASTM ، مع توفر وحدات التآكل والتشحيم الاختيارية ذات درجات الحرارة العالية في نظام واحد متكامل مسبقًا. يتيح هذا النطاق الذي لا مثيل له للمستخدمين محاكاة بيئة العمل القاسية المختلفة للمحامل الكروية بما في ذلك الضغط العالي والتآكل ودرجة الحرارة المرتفعة ، إلخ. كما أنه يوفر أداة مثالية للتقييم الكمي للسلوكيات الترابطية للمواد فائقة مقاومة التآكل تحت الأحمال العالية.

الآن ، لنتحدث عن طلبك

الانتهاء من سطح الجلد المعالج باستخدام 3D Profilometry

جلد معالج

تشطيب السطح باستخدام قياس الأبعاد ثلاثي الأبعاد

أُعدت بواسطة

كرايج للتنزه

مقدمة

بمجرد اكتمال عملية دباغة جلد الجلد ، يمكن أن يخضع سطح الجلد لعدة عمليات تشطيب لمجموعة متنوعة من الأشكال واللمس. يمكن أن تشمل هذه العمليات الميكانيكية التمدد ، والتلميع ، والصنفرة ، والنقش ، والطلاء وما إلى ذلك ، اعتمادًا على الاستخدام النهائي للجلد ، قد يتطلب البعض معالجة أكثر دقة وتحكمًا وقابلة للتكرار.

أهمية فحص الملف الشخصي للبحث والتطوير ومراقبة الجودة

نظرًا للاختلاف الكبير وعدم موثوقية طرق الفحص البصري ، يمكن للأدوات القادرة على تحديد ميزات المقاييس الدقيقة والنانوية بدقة تحسين عمليات تشطيب الجلد. يمكن أن يؤدي فهم تشطيب سطح الجلد بمعنى قابل للقياس الكمي إلى تحسين اختيار معالجة السطح المستند إلى البيانات لتحقيق نتائج إنهاء مثالية. NANOVEA 3D عدم الاتصال بروفایلومتر استخدام تقنية متحد البؤر لونية لقياس الأسطح الجلدية النهائية وتقديم أعلى مستوى من التكرار والدقة في السوق. عندما تفشل التقنيات الأخرى في توفير بيانات موثوقة ، بسبب ملامسة المسبار ، أو اختلاف السطح ، أو الزاوية ، أو الامتصاص أو الانعكاس ، تنجح NANOVEA Profilometers.

هدف القياس

في هذا التطبيق ، يتم استخدام NANOVEA ST400 لقياس ومقارنة تشطيب السطح لعينتين مختلفتين من الجلد ولكن تمت معالجتهما عن كثب. يتم حساب العديد من معلمات السطح تلقائيًا من ملف تعريف السطح.

سنركز هنا على خشونة السطح ، وعمق الغمازة ، ودرجة الغمازة ، وقطر الغمازة للتقييم المقارن.

نانوفيا

ST400

النتائج: عينة 1

ISO 25178

معلمات الارتفاع

معلمات ثلاثية الأبعاد أخرى

النتائج: العينة 2

ISO 25178

معلمات الارتفاع

معلمات ثلاثية الأبعاد أخرى

مقارنة العمق

توزيع العمق لكل عينة.
لوحظ عدد كبير من الدمامل العميقة في
عينة 1.

مقارنة الملعب

الملعب بين الدمامل على عينة 1 أصغر قليلاً
من
عينة 2، ولكن كلاهما لهما توزيع مماثل

 مقارنة القطر

توزيعات مماثلة لمتوسط قطر الدمامل ،
مع
عينة 1 عرض متوسط أقطار أصغر قليلاً في المتوسط.

خاتمة

في هذا التطبيق ، أظهرنا كيف يمكن لمقياس الملامح NANOVEA ST400 3D أن يميز بدقة تشطيب سطح الجلد المعالج. في هذه الدراسة ، سمحت لنا القدرة على قياس خشونة السطح ، وعمق الغمازة ، ونغمة الغمازة ، وقطر الغمازة بتحديد الاختلافات بين النهاية وجودة العينتين التي قد لا تكون واضحة من خلال الفحص البصري.

بشكل عام ، لم يكن هناك اختلاف واضح في مظهر عمليات المسح ثلاثية الأبعاد بين العينة 1 والعينة 2. ومع ذلك ، في التحليل الإحصائي ، هناك تمييز واضح بين العينتين. النموذج 1 يحتوي على كمية أكبر من الدمامل بأقطار أصغر ، وأعماق أكبر ونغمة أصغر من الدمامل إلى الدمامل مقارنةً بالنموذج 2.

يرجى ملاحظة أن هناك دراسات إضافية متاحة. يمكن تحليل مجالات الاهتمام الخاصة بشكل أكبر باستخدام وحدة AFM أو وحدة ميكروسكوب متكاملة. تتراوح سرعات NANOVEA 3D Profilometer من 20 مم / ثانية إلى 1 م / ث للمختبر أو البحث لتلبية احتياجات الفحص عالي السرعة ؛ يمكن بناؤها باستخدام أحجام مخصصة أو سرعات أو إمكانيات مسح ضوئي أو امتثال للغرفة النظيفة من الفئة 1 أو ناقل فهرسة أو للتكامل المباشر أو عبر الإنترنت.

الآن ، لنتحدث عن طلبك

اختبار ارتداء المكبس

اختبار ارتداء المكبس

باستخدام جهاز قياس الضغط

أُعدت بواسطة

فرانك ليو

مقدمة

تمثل خسارة الاحتكاك حوالي 10% من إجمالي الطاقة في الوقود لمحرك الديزل[1]. 40-55% من فقدان الاحتكاك يأتي من نظام أسطوانة الطاقة. يمكن تقليل فقد الطاقة من الاحتكاك بفهم أفضل للتفاعلات الترايبولوجية التي تحدث في نظام أسطوانة الطاقة.

ينبع جزء كبير من فقدان الاحتكاك في نظام أسطوانة الطاقة من التلامس بين حافة المكبس وبطانة الأسطوانة. التفاعل بين تنورة المكبس وزيوت التشحيم وواجهات الأسطوانة معقد للغاية بسبب التغيرات المستمرة في القوة ودرجة الحرارة والسرعة في المحرك الواقعي. يعد تحسين كل عامل عاملاً أساسيًا للحصول على الأداء الأمثل للمحرك. ستركز هذه الدراسة على تكرار الآليات التي تسبب قوى الاحتكاك والتآكل في واجهات بطانة المكبس-زيوت التشحيم-الاسطوانة (PLC).

 رسم تخطيطي لنظام أسطوانات الطاقة وواجهات بطانة المكبس-زيوت التشحيم-الاسطوانة.

[1] باي ، دونغ فانغ. نمذجة تزييت حافة المكبس في محركات الاحتراق الداخلي. ديس. معهد ماساتشوستس للتكنولوجيا ، 2012

أهمية اختبار المكابس بالمقاييس الثلاثية

زيت المحرك هو مادة تشحيم مصممة جيدًا لاستخدامها. بالإضافة إلى الزيت الأساسي ، يتم إضافة مواد مضافة مثل المنظفات والمشتتات ومحسن اللزوجة (VI) والعوامل المضادة للتآكل / المضادة للاحتكاك ومثبطات التآكل لتحسين أدائها. تؤثر هذه الإضافات على كيفية تصرف الزيت في ظل ظروف التشغيل المختلفة. يؤثر سلوك الزيت على واجهات PLC ويحدد ما إذا كان التآكل الكبير ناتجًا عن التلامس بين المعدن والمعدن أو حدوث تزييت هيدروديناميكي (تآكل ضئيل جدًا).

من الصعب فهم واجهات PLC دون عزل المنطقة عن المتغيرات الخارجية. من الأكثر عملية محاكاة الحدث بشروط تمثل تطبيقه الواقعي. ال نانوفيا ثلاثي الأبعاد مثالي لهذا. مجهزة بمستشعرات قوة متعددة، ومستشعر عمق، ووحدة تشحيم قطرة قطرة، ومرحلة ترددية خطية، نانوفيا T2000 قادر على محاكاة الأحداث التي تحدث داخل كتلة المحرك عن كثب والحصول على بيانات قيمة لفهم واجهات PLC بشكل أفضل.

الوحدة السائلة على NANOVEA T2000 Tribometer

تعتبر الوحدة النمطية التي يتم عرضها بواسطة Drop-by-drop أمرًا بالغ الأهمية لهذه الدراسة. نظرًا لأن المكابس يمكن أن تتحرك بمعدل سريع جدًا (أعلى من 3000 دورة في الدقيقة) ، فمن الصعب إنشاء طبقة رقيقة من مادة التشحيم عن طريق غمر العينة. لعلاج هذه المشكلة ، يمكن لوحدة الإسقاط أن تطبق باستمرار كمية ثابتة من مواد التشحيم على سطح حافة المكبس.

يزيل استخدام مواد التشحيم الطازجة أيضًا القلق من ملوثات التآكل المنزاحة التي تؤثر على خصائص مادة التشحيم.

نانوفيا T2000

ارتفاع ضغط ثلاثي الأبعاد

هدف القياس

ستتم دراسة واجهات بطانة مكبس التنورة-زيوت التشحيم-الاسطوانة في هذا التقرير. سيتم تكرار الواجهات عن طريق إجراء اختبار تآكل خطي مع وحدة تشحيم قطرة بقطرة.

سيتم تطبيق زيت التشحيم في درجة حرارة الغرفة وظروف التسخين لمقارنة البداية الباردة وظروف التشغيل المثلى. ستتم ملاحظة COF ومعدل التآكل لفهم كيفية تصرف الواجهات بشكل أفضل في تطبيقات الحياة الواقعية.

معلمات الاختبار

لاختبار ترايبولوجي على المكابس

حمولة …………………………. 100 شمال

مدة الاختبار …………………………. 30 دقيقة

سرعة …………………………. 2000 دورة في الدقيقة

توسيع …………………………. 10 ملم

المسافة الكلية …………………………. 1200 م

طلاء التنورة …………………………. مولي الجرافيت

مادة PIN …………………………. سبائك الألومنيوم 5052

قطر PIN …………………………. 10 ملم

المزلق …………………………. زيت المحرك (10W-30)

تقريبا. معدل المد و الجزر …………………………. 60 مل / دقيقة

درجة حرارة …………………………. درجة حرارة الغرفة و 90 درجة مئوية

نتائج اختبار الاستلام الخطي

في هذه التجربة ، تم استخدام A5052 كمادة مضادة. بينما تصنع كتل المحرك عادةً من الألمنيوم المصبوب مثل A356 ، تتمتع A5052 بخصائص ميكانيكية مماثلة لـ A356 لهذا الاختبار المحاكي [2].

في ظل ظروف الاختبار ، كان التآكل الكبير
لوحظ على تنورة المكبس في درجة حرارة الغرفة
مقارنة بـ 90 درجة مئوية. تشير الخدوش العميقة التي شوهدت على العينات إلى أن التلامس بين المادة الساكنة وتنورة المكبس يحدث بشكل متكرر خلال الاختبار. قد تقيد اللزوجة العالية في درجة حرارة الغرفة الزيت من ملء الفجوات بالكامل في الواجهات وخلق تلامس بين المعدن والمعدن. في درجات الحرارة المرتفعة ، يخف الزيت ويكون قادرًا على التدفق بين الدبوس والمكبس. نتيجة لذلك ، لوحظ تآكل أقل بشكل ملحوظ في درجات الحرارة المرتفعة. يوضح الشكل 5 جانبًا واحدًا من ندبة التآكل التي تم ارتداؤها بشكل أقل بكثير من الجانب الآخر. هذا على الأرجح بسبب موقع إنتاج النفط. كانت سماكة غشاء التشحيم أكثر سمكًا في جانب واحد من الجانب الآخر ، مما تسبب في تآكل غير متساوٍ.

 

 

[2] "5052 ألمنيوم مقابل 356.0 ألمنيوم". MakeItFrom.com ، makeitfrom.com/compare/5052-O-Aluminum/A356.0-SG70B-A13560-Cast-Aluminum

يمكن تقسيم COF لاختبارات الترايبولوجي الخطية إلى تمريرة عالية ومنخفضة. يشير التمرير العالي إلى العينة التي تتحرك في الاتجاه الأمامي أو الإيجابي ويشير التمرير المنخفض إلى تحرك العينة في الاتجاه المعاكس أو السلبي. لوحظ أن متوسط COF لزيت RT أقل من 0.1 لكلا الاتجاهين. كان متوسط COF بين التمريرات 0.072 و 0.080. تم العثور على متوسط COF لزيت 90 درجة مئوية مختلفًا بين التمريرات. لوحظ متوسط قيم COF من 0.167 و 0.09. يعطي الاختلاف في COF دليلًا إضافيًا على أن الزيت كان قادرًا فقط على تبليل جانب واحد من الدبوس بشكل صحيح. تم الحصول على نسبة عالية من COF عندما تم تشكيل فيلم سميك بين الدبوس وتنورة المكبس بسبب حدوث تزييت هيدروديناميكي. لوحظ انخفاض COF في الاتجاه الآخر عند حدوث تزييت مختلط. لمزيد من المعلومات حول التزييت الهيدروديناميكي والتشحيم المختلط ، يرجى زيارة ملاحظة التطبيق الخاصة بنا على منحنيات Stribeck.

الجدول 1: النتائج من اختبار التآكل المشحم على المكابس.

شكل ١: الرسوم البيانية COF لاختبار تآكل الزيت في درجة حرارة الغرفة. A الخام B تمرير مرتفع C منخفض.

الشكل 2: الرسوم البيانية COF لـ 90 درجة مئوية اختبار زيت التآكل A الخام الجانبي B تمرير مرتفع C منخفض.

الشكل 3: صورة بصرية لندبة التآكل من اختبار تآكل زيت المحرك RT.

الشكل 4: حجم تحليل ثقب ندبة التآكل من اختبار تآكل زيت المحرك RT.

الشكل 5: فحص قياس ملامح ندبات التآكل من اختبار تآكل زيت المحرك RT.

الشكل 6: صورة بصرية لندبة التآكل من اختبار تآكل زيت المحرك عند 90 درجة مئوية

الشكل 7: حجم تحليل ثقب ندبة التآكل من اختبار تآكل زيت المحرك عند 90 درجة مئوية.

الشكل 8: فحص قياس ملامح ندبة التآكل من اختبار تآكل زيت المحرك عند 90 درجة مئوية.

خاتمة

تم إجراء اختبار التآكل الترددي الخطي المشحم على مكبس لمحاكاة الأحداث التي تحدث في أ
محرك تشغيلي حقيقي. تعتبر واجهات بطانة المكبس-زيوت التشحيم-الاسطوانة ضرورية لعمليات المحرك. تكون سماكة مادة التشحيم في الواجهة مسؤولة عن فقد الطاقة بسبب الاحتكاك أو التآكل بين حافة المكبس وبطانة الأسطوانة. لتحسين المحرك ، يجب أن يكون سمك الفيلم رقيقًا قدر الإمكان دون السماح بلمس حافة المكبس وبطانة الأسطوانة. ومع ذلك ، فإن التحدي هو كيف ستؤثر التغيرات في درجة الحرارة والسرعة والقوة على واجهات PLC.

بفضل النطاق الواسع للتحميل (حتى 2000 نيوتن) والسرعة (حتى 15000 دورة في الدقيقة) ، فإن مقياس ترايبوميتر NANOVEA T2000 قادر على محاكاة الظروف المختلفة الممكنة في المحرك. تتضمن الدراسات المستقبلية المحتملة حول هذا الموضوع كيف ستتصرف واجهات PLC تحت حمولة ثابتة مختلفة ، وحمل متذبذب ، ودرجة حرارة زيت التشحيم ، وسرعته ، وطريقة تطبيق مواد التشحيم. يمكن ضبط هذه المعلمات بسهولة باستخدام NANOVEA T2000 Tribometer لإعطاء فهم كامل لآليات واجهات بطانة أسطوانة زيوت التشحيم.

الآن ، لنتحدث عن طلبك

طبوغرافيا السطح العضوي باستخدام مقياس الملامح المحمول ثلاثي الأبعاد

طبوغرافيا الأسطح العضوية

استخدام جهاز قياس ثلاثي الأبعاد محمول

أُعدت بواسطة

كرايج للتنزه

مقدمة

أصبحت الطبيعة مصدر إلهام حيوي لتطوير بنية السطح المحسنة. أدى فهم الهياكل السطحية الموجودة في الطبيعة إلى دراسات الالتصاق بناءً على أقدام الوزغة ، ودراسات المقاومة المستندة إلى دراسات التغير النسيجي وخيار البحر المستندة إلى الأوراق ، من بين العديد من الدراسات الأخرى. تحتوي هذه الأسطح على عدد من التطبيقات المحتملة من الطب الحيوي إلى الملابس والسيارات. لكي تنجح أي من هذه الاختراقات السطحية ، يجب تطوير تقنيات التصنيع بحيث يمكن محاكاة خصائص السطح وإعادة إنتاجها. هذه هي العملية التي ستتطلب التحديد والتحكم.

أهمية ملف التعريف البصري ثلاثي الأبعاد المحمول غير المتصل للأسطح العضوية

باستخدام تقنية الضوء اللوني، فإن جهاز NANOVEA Jr25 المحمول ملف التعريف البصري يتمتع بقدرة فائقة على قياس أي مادة تقريبًا. يتضمن ذلك الزوايا الفريدة والحادة والأسطح العاكسة والممتصة الموجودة ضمن مجموعة واسعة من خصائص الأسطح الطبيعية. توفر قياسات عدم الاتصال ثلاثية الأبعاد صورة ثلاثية الأبعاد كاملة لإعطاء فهم أكثر اكتمالاً لميزات السطح. وبدون القدرات ثلاثية الأبعاد، فإن تحديد أسطح الطبيعة سيعتمد فقط على المعلومات ثنائية الأبعاد أو التصوير المجهري، الذي لا يوفر معلومات كافية لتقليد السطح الذي تمت دراسته بشكل صحيح. إن فهم النطاق الكامل لخصائص السطح بما في ذلك الملمس والشكل والأبعاد، من بين أشياء أخرى كثيرة، سيكون أمرًا بالغ الأهمية لنجاح التصنيع.

إن القدرة على الحصول بسهولة على نتائج ذات جودة معملية في هذا المجال تفتح الباب لفرص بحثية جديدة.

هدف القياس

في هذا التطبيق ، فإن ملف نانوفيا يستخدم Jr25 لقياس سطح الورقة. توجد قائمة لا حصر لها من معلمات السطح التي يمكن حسابها تلقائيًا بعد المسح السطحي ثلاثي الأبعاد.

هنا سنراجع السطح ثلاثي الأبعاد ونختار
مجالات الاهتمام لمزيد من التحليل ، بما في ذلك
تحديد وفحص خشونة السطح والقنوات والتضاريس

نانوفيا

جي آر 25

شروط الاختبار

عمق المستقبل

متوسط كثافة الأخاديد: 16.471 سم / سم 2
متوسط عمق الأخاديد: 97.428 ميكرومتر
أقصى عمق: 359.769 ميكرومتر

خاتمة

في هذا التطبيق ، أظهرنا كيف أن ملف نانوفيا يمكن لملف التعريف البصري ثلاثي الأبعاد المحمول Jr25 أن يميز بدقة كلا من الطبوغرافيا وتفاصيل مقياس النانومتر لسطح الورقة في الحقل. من خلال قياسات السطح ثلاثية الأبعاد هذه ، يمكن تحديد مجالات الاهتمام بسرعة ثم تحليلها بقائمة من الدراسات التي لا نهاية لها (الأبعاد ، ملمس النهاية الخشنة ، تضاريس شكل الشكل ، تسطيح صفحة الالتواء ، مستوية الحجم ، منطقة الحجم ، ارتفاع الخطوة و اخرين). يمكن اختيار المقطع العرضي ثنائي الأبعاد بسهولة لتحليل مزيد من التفاصيل. باستخدام هذه المعلومات ، يمكن فحص الأسطح العضوية على نطاق واسع باستخدام مجموعة كاملة من موارد قياس السطح. كان من الممكن إجراء مزيد من التحليل لمجالات الاهتمام الخاصة باستخدام وحدة AFM المدمجة على نماذج سطح الطاولة.

نانوفيا تقدم أيضًا أجهزة قياس الملامح المحمولة عالية السرعة للبحث الميداني ومجموعة واسعة من الأنظمة القائمة على المعامل ، فضلاً عن توفير خدمات المختبرات.

الآن ، لنتحدث عن طلبك

مقياس خشونة ورق الصنفرة

ورق الصنفرة: تحليل الخشونة وقطر الجسيمات

ورق الصنفرة: تحليل الخشونة وقطر الجسيمات

يتعلم أكثر

ورق زجاج

تحليل الخشونة وقطر الجسيمات

أُعدت بواسطة

فرانك ليو

مقدمة

ورق الصنفرة منتج شائع متوفر تجاريًا يستخدم كمادة كاشطة. الاستخدام الأكثر شيوعًا لورق الصنفرة هو إزالة الطلاء أو تلميع السطح بخصائصه الكاشطة. يتم تصنيف هذه الخصائص الكاشطة إلى حبيبات ، كل منها مرتبط بمدى سلاسة أو
خشن من السطح سوف يعطي. لتحقيق الخصائص الكاشطة المرغوبة ، يجب على مصنعي ورق الصنفرة التأكد من أن الجسيمات الكاشطة ذات حجم معين ولها انحراف ضئيل. لتحديد جودة ورق الصنفرة ، NANOVEA's 3D Non-Contact مقياس الملامح يمكن استخدامها للحصول على معامل الارتفاع الحسابي (Sa) ومتوسط قطر الجسيمات لمنطقة العينة.

أهمية ملف التعريف البصري ثلاثي الأبعاد غير المتصل لـ SANDPAPER

عند استخدام ورق الصنفرة ، يجب أن يكون التفاعل بين الجزيئات الكاشطة والسطح الذي يتم صنفرته منتظمًا للحصول على تشطيبات متناسقة للسطح. لتقدير ذلك ، يمكن ملاحظة سطح ورق الصنفرة باستخدام ملف التعريف البصري ثلاثي الأبعاد غير المتصل من NANOVEA لمعرفة الانحرافات في أحجام الجسيمات والارتفاعات والتباعد.

هدف القياس

في هذه الدراسة ، تم العثور على خمس حبيبات مختلفة من ورق الصنفرة (120 ،
180 ، 320 ، 800 ، و 2000) بامتداد
NANOVEA ST400 3D ملف التعريف البصري عدم الاتصال.
يتم استخراج Sa من المسح والجسيمات
يتم حساب الحجم عن طريق إجراء تحليل الزخارف إلى
العثور على قطرها المكافئ

نانوفيا

ST400

النتائج والمناقشة

يتناقص ورق الصنفرة في خشونة السطح (Sa) وحجم الجسيمات مع زيادة الحبيبات ، كما هو متوقع. تراوح Sa من 42.37 ميكرومتر إلى 3.639 ميكرومتر. يتراوح حجم الجسيمات من 127 ± 48.7 إلى 21.27 ± 8.35. تخلق الجسيمات الأكبر والاختلافات المرتفعة تأثيرًا كاشطًا أقوى على الأسطح بدلاً من الجزيئات الأصغر مع اختلاف الارتفاع المنخفض.
يرجى ملاحظة أن جميع تعريفات معلمات الارتفاع المحددة مدرجة في الصفحة.

الجدول 1: مقارنة بين حبيبات ورق الصنفرة ومعلمات الارتفاع.

الجدول 2: مقارنة بين حبيبات ورق الصنفرة وقطر الجسيمات.

عرض ثنائي وثلاثي الأبعاد للوردي 

فيما يلي عرض الألوان الزائفة والأبعاد الثلاثية لعينات ورق الصنفرة.
تم استخدام مرشح غاوسي 0.8 مم لإزالة الشكل أو التموج.

تحليل الصورة

للعثور على الجسيمات الموجودة على السطح بدقة ، تم إعادة تحديد عتبة مقياس الارتفاع لإظهار الطبقة العليا من ورق الصنفرة فقط. ثم تم إجراء تحليل الزخارف للكشف عن القمم.

خاتمة

تم استخدام ملف التعريف البصري ثلاثي الأبعاد غير المتصل من NANOVEA لفحص الخصائص السطحية لمختلف حبيبات ورق الصنفرة نظرًا لقدرتها على مسح الأسطح بميزات دقيقة ومتناهية الصغر.

تم الحصول على معلمات ارتفاع السطح وأقطار الجسيمات المكافئة من كل عينة من عينات ورق الصنفرة باستخدام برنامج متقدم لتحليل عمليات المسح ثلاثية الأبعاد. لوحظ أنه مع زيادة حجم الحبيبات ، تقل خشونة السطح (Sa) وحجم الجسيمات كما هو متوقع.

الآن ، لنتحدث عن طلبك

قياس حدود سطح الستايروفوم

قياس حدود السطح

قياس حدود السطح باستخدام مقياس التشكيل الجانبي ثلاثي الأبعاد

يتعلم أكثر

قياس الحدود السطحية

استخدام القياس الشخصي ثلاثي الأبعاد

أُعدت بواسطة

كريج ليزينج

مقدمة

في الدراسات التي يتم فيها تقييم واجهة ميزات السطح والأنماط والأشكال وما إلى ذلك ، من أجل الاتجاه ، سيكون من المفيد تحديد مجالات الاهتمام بسرعة على ملف تعريف القياس بأكمله. من خلال تقسيم السطح إلى مناطق مهمة ، يمكن للمستخدم تقييم الحدود والقمم والحفر والمساحات والأحجام والعديد من الأشياء الأخرى بسرعة لفهم دورها الوظيفي في ملف تعريف السطح بأكمله قيد الدراسة. على سبيل المثال ، مثل تصوير حدود الحبوب للمعادن ، تكمن أهمية التحليل في واجهة العديد من الهياكل وتوجهها العام. من خلال فهم كل مجال من مجالات الاهتمام ، يمكن تحديد العيوب و / أو الشذوذ داخل المنطقة الكلية. على الرغم من أن تصوير حدود الحبوب يُدرس عادةً في نطاق يتجاوز قدرة مقياس ملف التعريف ، وهو مجرد تحليل للصور ثنائية الأبعاد ، إلا أنه مرجع مفيد لتوضيح مفهوم ما سيتم عرضه هنا على نطاق أوسع جنبًا إلى جنب مع مزايا قياس السطح ثلاثي الأبعاد.

أهمية مقياس التشكيل ثلاثي الأبعاد غير المتصل لدراسة فصل السطح

على عكس التقنيات الأخرى مثل مجسات اللمس أو قياس التداخل، فإن مقياس عدم الاتصال ثلاثي الأبعاد، باستخدام اللوني المحوري، يمكنه قياس أي سطح تقريبًا، ويمكن أن تختلف أحجام العينات بشكل كبير بسبب التدريج المفتوح وليس هناك حاجة لإعداد العينة. يتم الحصول على النانو من خلال النطاق الكلي أثناء قياس المظهر الجانبي للسطح بدون أي تأثير من انعكاس العينة أو الامتصاص، وله قدرة متقدمة على قياس زوايا السطح العالية ولا يوجد أي معالجة برمجية للنتائج. قم بقياس أي مادة بسهولة: شفافة، معتمة، براق، منتشر، مصقول، خشن وما إلى ذلك. توفر تقنية مقياس عدم الاتصال قدرة مثالية وواسعة وسهلة الاستخدام لتحقيق أقصى قدر من الدراسات السطحية عندما تكون هناك حاجة إلى تحليل حدود السطح؛ إلى جانب فوائد القدرة المدمجة ثنائية وثلاثية الأبعاد.

هدف القياس

في هذا التطبيق ، يتم استخدام مقياس التشكيل الجانبي Nanovea ST400 لقياس مساحة سطح الستايروفوم. تم إنشاء الحدود من خلال الجمع بين ملف الكثافة المنعكس جنبًا إلى جنب مع التضاريس ، والتي يتم الحصول عليها في وقت واحد باستخدام NANOVEA ST400. ثم تم استخدام هذه البيانات لحساب معلومات الشكل والحجم المختلفة لكل "حبة" ستايروفوم.

نانوفيا

ST400

النتائج والمناقشة: قياس حدود السطح ثنائي الأبعاد

صورة الطبوغرافيا (أسفل اليسار) مقنعة بواسطة صورة الكثافة المنعكسة (أسفل اليمين) لتحديد حدود الحبوب بوضوح. تم تجاهل جميع الحبوب التي يقل قطرها عن 565 ميكرومتر عن طريق تطبيق مرشح.

العدد الإجمالي للحبوب: 167
إجمالي المساحة المتوقعة التي تشغلها الحبوب: 166.917 ملم مربع (64.5962 %)
إجمالي المساحة المتوقعة التي تشغلها الحدود: (35.4038 %)
كثافة الحبوب: 0.646285 حبة / مم 2

المساحة = 0.999500 ملم² +/- 0.491846 ملم²
المحيط = 9114.15 ميكرومتر +/- 4570.38 ميكرومتر
القطر المكافئ = 1098.61 ميكرومتر +/- 256.235 ميكرومتر
متوسط القطر = 945.373 ميكرومتر +/- 248.344 ميكرومتر
الحد الأدنى للقطر = 675.898 ميكرومتر +/- 246.850 ميكرومتر
أقصى قطر = 1312.43 ميكرومتر +/- 295.258 ميكرومتر

النتائج والمناقشة: قياس حدود السطح ثلاثي الأبعاد

باستخدام بيانات الطبوغرافيا ثلاثية الأبعاد التي تم الحصول عليها ، يمكن تحليل الحجم والارتفاع والذروة ونسبة العرض إلى الارتفاع ومعلومات الشكل العام على كل حبة. إجمالي المساحة ثلاثية الأبعاد المشغولة: 2.525 مم 3

خاتمة

في هذا التطبيق ، أظهرنا كيف يمكن لمقياس NANOVEA 3D Non Contact Profilometer أن يميز بدقة سطح الستايروفوم. يمكن الحصول على المعلومات الإحصائية على كامل سطح الاهتمام أو على الحبوب الفردية ، سواء كانت قمم أو حفر. في هذا المثال ، تم استخدام جميع الحبوب الأكبر من الحجم المحدد من قبل المستخدم لإظهار المنطقة والمحيط والقطر والارتفاع. يمكن أن تكون الميزات الموضحة هنا حاسمة للبحث ومراقبة الجودة للأسطح الطبيعية والمُصنَّعة مسبقًا بدءًا من تطبيقات الطب الحيوي إلى تطبيقات الآلات الدقيقة جنبًا إلى جنب مع العديد من التطبيقات الأخرى. 

الآن ، لنتحدث عن طلبك

قياس الكفاف باستخدام مقياس الملامح بواسطة NANOVEA

قياس محيط المداس المطاطي

قياس محيط المداس المطاطي

يتعلم أكثر

 

 

 

 

 

 

 

 

 

 

 

 

 

قياس محيط الإطار المطاطي

استخدام بروفيلر بصري ثلاثي الأبعاد

قياس محيط المداس المطاطي - ملف تعريف نانوفيا

أُعدت بواسطة

أندريا هيرمان

مقدمة

مثل كل المواد ، يرتبط معامل احتكاك المطاط جزئيا لخشونة سطحه. في تطبيقات إطارات السيارات ، يعتبر الجر على الطريق أمرًا مهمًا للغاية. يلعب كل من خشونة السطح ومداس الإطار دورًا في ذلك. في هذه الدراسة ، يتم تحليل سطح المطاط وخشونة وأبعاد المداس.

* العينة

أهمية

القياس الشخصي ثلاثي الأبعاد لعدم الاتصال

لدراسات المطاط

على عكس التقنيات الأخرى مثل مجسات اللمس أو قياس التداخل، فإن تقنية NANOVEA ملفات التعريف البصرية ثلاثية الأبعاد غير المتصلة استخدم اللوني المحوري لقياس أي سطح تقريبًا. 

يسمح التدريج المفتوح لنظام ملف التعريف بمجموعة متنوعة من أحجام العينات ويتطلب إعدادًا صفريًا للعينات. يمكن اكتشاف ميزات النانو من خلال النطاق الكلي أثناء مسح واحد بتأثير صفري من انعكاس العينة أو امتصاصها. بالإضافة إلى ذلك ، تتمتع أدوات التعريف هذه بالقدرة المتقدمة على قياس زوايا السطح العالية دون الحاجة إلى معالجة البرامج للنتائج.

قم بقياس أي مادة بسهولة: شفافة ، غير شفافة ، مرآوية ، منتشرة ، مصقولة ، خشنة ، إلخ. توفر تقنية القياس الخاصة بملفات التعريف NANOVEA 3D Non-Contact Profile قدرة مثالية وواسعة وسهلة الاستخدام لتعظيم دراسات السطح جنبًا إلى جنب مع فوائد الجمع بين ثنائية وثنائية الأبعاد القدرة ثلاثية الأبعاد.

هدف القياس

في هذا التطبيق ، نعرض NANOVEA ST400 ، جهاز قياس بصري ثلاثي الأبعاد غير متصل سطح وطرق الإطارات المطاطية.

مساحة سطح عينة كبيرة بما يكفي لتمثيلها تم اختيار سطح الإطار بالكامل بشكل عشوائي لهذه الدراسة. 

استخدمنا لتحديد خصائص المطاط برنامج التحليل NANOVEA Ultra 3D إلى قياس أبعاد الكنتور والعمق ، الخشونة والمساحة المتطورة من السطح.

نانوفيا

ST400

تحليل: مداس الإطار

يُظهر العرض ثلاثي الأبعاد وطريقة عرض اللون الزائف للخطوط قيمة تعيين تصميمات الأسطح ثلاثية الأبعاد. يوفر للمستخدمين أداة مباشرة لمراقبة حجم وشكل المداسات من زوايا مختلفة. يعتبر كل من تحليل الكفاف المتقدم وتحليل ارتفاع الخطوة من الأدوات القوية للغاية لقياس الأبعاد الدقيقة لأشكال العينة وتصميمها

تحليل الكونتور المتقدم

تحليل ارتفاع الخطوة

تحليل: السطح المطاطي

يمكن قياس كمية السطح المطاطي بعدة طرق باستخدام أدوات برمجية مدمجة كما هو موضح في الأشكال التالية كأمثلة. يمكن ملاحظة أن خشونة السطح تبلغ 2.688 ميكرومتر ، والمساحة المطورة مقابل المساحة المسقطة هي 9.410 مم² مقابل 8.997 مم². تسمح لنا هذه المعلومات بفحص العلاقة بين تشطيب السطح وجر تركيبات المطاط المختلفة أو حتى المطاط بدرجات متفاوتة من تآكل السطح.

خاتمة

في هذا التطبيق ، أظهرنا كيف NANOVEA يمكن لملف التعريف البصري ثلاثي الأبعاد عدم التلامس أن يميز بدقة خشونة السطح وأبعاد مداس المطاط.

تُظهر البيانات خشونة سطحية تبلغ 2.69 ميكرومتر ومساحة متطورة تبلغ 9.41 مم² مع مساحة مسقطة تبلغ 9 مم². كانت أبعاد وأنصاف أقطار مختلفة من مداس المطاط تقاس كذلك.

يمكن استخدام المعلومات المقدمة في هذه الدراسة لمقارنة أداء الإطارات المطاطية بتصميمات أو تركيبات مختلفة للمداس أو درجات متفاوتة من التآكل. البيانات المعروضة هنا لا تمثل سوى جزء من الحسابات المتوفرة في برنامج التحليل Ultra 3D.

الآن ، لنتحدث عن طلبك

تحليل سطح مقياس السمك باستخدام ملف التعريف البصري ثلاثي الأبعاد

تحليل سطح مقياس السمك باستخدام ملف التعريف البصري ثلاثي الأبعاد

يتعلم أكثر

تحليل سطح مقياس السمك

باستخدام 3D OPTICAL PROFILER

مقياس ملامح قشور الأسماك

أُعدت بواسطة

أندريا نوفيتسكي

مقدمة

تتم دراسة الشكل والأنماط والميزات الأخرى لمقياس السمك باستخدام NANOVEA ملف التعريف البصري ثلاثي الأبعاد غير المتصل. إن الطبيعة الدقيقة لهذه العينة البيولوجية بالإضافة إلى أخاديدها الصغيرة جدًا وذات الزوايا العالية تسلط الضوء أيضًا على أهمية تقنية عدم الاتصال الخاصة بالمحدد. تسمى الأخاديد الموجودة على المقياس بالدائرة، ويمكن دراستها لتقدير عمر السمكة، وحتى التمييز بين فترات معدلات النمو المختلفة، المشابهة لحلقات الشجرة. هذه معلومات مهمة جدًا لإدارة مجموعات الأسماك البرية من أجل منع الصيد الجائر.

أهمية قياس ملامح عدم الاتصال ثلاثي الأبعاد للدراسات البيولوجية

على عكس التقنيات الأخرى مثل مجسات اللمس أو قياس التداخل ، يمكن لملف التعريف البصري ثلاثي الأبعاد غير المتصل ، باستخدام اللوني المحوري ، قياس أي سطح تقريبًا. يمكن أن تختلف أحجام العينات على نطاق واسع بسبب التدريج المفتوح وليس هناك حاجة لتحضير العينة. يتم الحصول على ميزات النانو من خلال النطاق الكلي أثناء قياس المظهر الجانبي للسطح بتأثير صفري من انعكاس العينة أو امتصاصها. توفر الأداة قدرة متقدمة على قياس زوايا السطح العالية بدون معالجة البرامج للنتائج. يمكن قياس أي مادة بسهولة ، سواء كانت شفافة أو غير شفافة أو مرآوية أو منتشرة أو مصقولة أو خشنة. توفر هذه التقنية قدرة مثالية وواسعة وسهلة الاستخدام لتحقيق أقصى قدر من الدراسات السطحية جنبًا إلى جنب مع مزايا القدرات ثنائية وثلاثية الأبعاد المدمجة.

هدف القياس

في هذا التطبيق ، نعرض NANOVEA ST400 ، ملف تعريف ثلاثي الأبعاد غير متصل بمستشعر عالي السرعة ، مما يوفر تحليلًا شاملاً لسطح المقياس.

تم استخدام الأداة لمسح العينة بأكملها ، إلى جانب مسح أعلى دقة للمنطقة المركزية. تم قياس خشونة السطح الخارجي والداخلي للمقياس للمقارنة أيضًا.

نانوفيا

ST400

توصيف السطح ثلاثي الأبعاد وثنائي الأبعاد للمقياس الخارجي

يُظهر العرض ثلاثي الأبعاد وعرض الألوان الزائفة للمقياس الخارجي بنية معقدة تشبه بصمة الإصبع أو حلقات الشجرة. يوفر هذا للمستخدمين أداة مباشرة لمراقبة خصائص سطح المقياس مباشرة من زوايا مختلفة. يتم عرض قياسات أخرى مختلفة للمقياس الخارجي جنبًا إلى جنب مع مقارنة الجانب الخارجي والداخلي للمقياس.

مقياس السمك المسح الضوئي ثلاثي الأبعاد مقياس الملامح
مقياس السمك المسح الضوئي بحجم ثلاثي الأبعاد
مقياس السمك المسح الضوئي الخطوة الارتفاع 3D ملف التعريف البصري

مقارنة خشونة السطح

مقياس السمك مقياس الملامح 3D المسح

خاتمة

في هذا التطبيق ، أظهرنا كيف يمكن لملف التعريف البصري NANOVEA 3D Non-Contact Optical Profiler أن يميز مقياس السمك بعدة طرق. 

يمكن تمييز الأسطح الخارجية والداخلية للميزان بسهولة عن طريق خشونة السطح وحدها ، بقيم خشونة تبلغ 15.92 ميكرومتر و 1.56 ميكرومتر على التوالي. بالإضافة إلى ذلك ، يمكن التعرف على معلومات دقيقة ودقيقة حول مقياس الأسماك من خلال تحليل الأخاديد أو الدوائر الموجودة على السطح الخارجي للمقياس. تم قياس مسافة نطاقات الدوائر من مركز البؤرة ، ووجد أيضًا أن ارتفاع الدائرة يبلغ ارتفاعها حوالي 58 ميكرون في المتوسط. 

تمثل البيانات الموضحة هنا جزءًا فقط من الحسابات المتوفرة في برنامج التحليل.

الآن ، لنتحدث عن طلبك

طبوغرافيا عدسة فرينل

عدسة فريسنل

الأبعاد باستخدام القياس الشخصي ثلاثي الأبعاد

أُعدت بواسطة

دوانجي لي وبنجامين ميل

مقدمة

العدسة هي جهاز بصري للتناظر المحوري ينقل وينكسر الضوء. تتكون العدسة البسيطة من مكون بصري واحد لتقريب الضوء أو تشعبه. على الرغم من أن الأسطح الكروية ليست شكلًا مثاليًا لصنع العدسة ، إلا أنها غالبًا ما تُستخدم كأبسط شكل يمكن طحن الزجاج به وصقله.

تتكون عدسة فرينل من سلسلة من الحلقات متحدة المركز ، وهي أجزاء رقيقة من عدسة بسيطة بعرض صغير يصل إلى بضعة أجزاء من الألف من البوصة. تحتوي عدسات فرينل على فتحة كبيرة وطول بؤري قصير ، مع تصميم مضغوط يقلل من وزن وحجم المواد المطلوبة ، مقارنة بالعدسات التقليدية التي لها نفس الخصائص البصرية. تُفقد كمية صغيرة جدًا من الضوء بسبب الامتصاص بسبب الهندسة الرقيقة لعدسة فرينل.

أهمية القياس الشخصي ثلاثي الأبعاد غير الملامس لفحص عدسة فريسنل

تُستخدم عدسات فريسنل على نطاق واسع في صناعة السيارات والمنارات والطاقة الشمسية وأنظمة الهبوط البصرية لحاملات الطائرات. إن صب العدسات أو ختمها من البلاستيك الشفاف يمكن أن يجعل إنتاجها فعالاً من حيث التكلفة. تعتمد جودة خدمة عدسات فريسنل في الغالب على دقة وجودة سطح الحلقة متحدة المركز. على عكس تقنية مسبار اللمس، NANOVEA ملفات التعريف البصرية قم بإجراء قياسات سطحية ثلاثية الأبعاد دون لمس السطح، وتجنب خطر حدوث خدوش جديدة. تعتبر تقنية Chromatic Light مثالية للمسح الدقيق للأشكال المعقدة، مثل العدسات ذات الأشكال الهندسية المختلفة.

رسم تخطيطي لعدسة فريسنل

يمكن تصنيع عدسات فريسنل البلاستيكية الشفافة بالقولبة أو الختم. تعد مراقبة الجودة الدقيقة والفعالة أمرًا بالغ الأهمية للكشف عن قوالب الإنتاج أو الطوابع المعيبة. من خلال قياس ارتفاع ونغمة الحلقات متحدة المركز ، يمكن اكتشاف اختلافات الإنتاج من خلال مقارنة القيم المقاسة مع قيم المواصفات التي قدمتها الشركة المصنعة للعدسة.

يضمن القياس الدقيق لمظهر العدسة تشكيل القوالب أو الأختام بشكل صحيح لتلائم مواصفات الشركة المصنعة. علاوة على ذلك ، يمكن أن يبلى الطابع تدريجيًا بمرور الوقت ، مما يؤدي إلى فقده لشكله الأولي. يعد الانحراف المستمر عن مواصفات الشركة المصنعة للعدسات مؤشرًا إيجابيًا على أن القالب بحاجة إلى الاستبدال.

هدف القياس

في هذا التطبيق ، نعرض NANOVEA ST400 ، ملف تعريف ثلاثي الأبعاد غير متصل بجهاز استشعار عالي السرعة ، مما يوفر تحليلًا شاملًا ثلاثي الأبعاد لمكون بصري لشكل معقد. يتم إجراؤه على عدسة فرينل.

نانوفيا

ST400

تتكون عدسة فرينل الأكريليك مقاس 2.3 بوصة × 2.3 بوصة المستخدمة في هذه الدراسة من 

سلسلة من الحلقات متحدة المركز ومقطع عرضي مسنن معقد. 

لها طول بؤري 1.5 بوصة ، قطر حجم فعال 2.0 بوصة ، 

125 أخاديد في البوصة ، ومعامل انكسار 1.49.

يُظهر مسح NANOVEA ST400 لعدسة Fresnel زيادة ملحوظة في ارتفاع الحلقات متحدة المركز ، متحركًا إلى الخارج من المركز.

2D FALSE COLOR

تمثيل الارتفاع

عرض ثلاثي الأبعاد

الملف الشخصي المستخرج

الذروة والوادي

تحليل الأبعاد للملف الشخصي

خاتمة

في هذا التطبيق ، أظهرنا أن NANOVEA ST400 ملف التعريف البصري غير الملامس يقيس بدقة التضاريس السطحية لعدسات فريسنل. 

يمكن تحديد أبعاد الارتفاع والميل بدقة من ملف التعريف المسنن المعقد باستخدام برنامج التحليل NANOVEA. يمكن للمستخدمين فحص جودة قوالب الإنتاج أو الأختام بشكل فعال من خلال مقارنة ارتفاع الحلقة وأبعاد الميل للعدسات المصنعة مقابل مواصفات الحلقة المثالية.

تمثل البيانات الموضحة هنا جزءًا فقط من الحسابات المتوفرة في برنامج التحليل. 

تقيس ملفات التعريف الضوئية من NANOVEA أي سطح تقريبًا في المجالات بما في ذلك أشباه الموصلات والإلكترونيات الدقيقة والطاقة الشمسية والألياف البصرية والسيارات والفضاء والمعادن والآلات والطلاء والأدوية والطب الحيوي والبيئي والعديد من المجالات الأخرى.

 

الآن ، لنتحدث عن طلبك

قطع غيار الآلات QC

فحص الأجزاء المجهزة

قطع غيار الآلات

الفحص من نموذج CAD باستخدام قياس السمات ثلاثية الأبعاد

مؤلف:

دوانجي لي ، دكتوراه

تمت مراجعته من

جوسلين اسبارزا

فحص الأجزاء المجهزة بمقياس ملف التعريف

مقدمة

يتزايد الطلب على الآلات الدقيقة القادرة على إنشاء أشكال هندسية معقدة عبر مجموعة من الصناعات. من الفضاء والطب والسيارات إلى التروس التقنية والآلات والآلات الموسيقية ، يدفع الابتكار المستمر والتطور التوقعات ومعايير الدقة إلى آفاق جديدة. ونتيجة لذلك ، نشهد ارتفاع الطلب على تقنيات وأدوات الفحص الصارمة لضمان أعلى جودة للمنتجات.

أهمية قياس ملامح عدم التلامس ثلاثي الأبعاد لفحص الأجزاء

تعد مقارنة خصائص الأجزاء المصنعة بنماذج CAD الخاصة بهم أمرًا ضروريًا للتحقق من التفاوتات والالتزام بمعايير الإنتاج. يعد الفحص أثناء وقت الخدمة أمرًا حاسمًا أيضًا لأن تآكل الأجزاء قد يتطلب استبدالها. سيساعد تحديد أي انحرافات عن المواصفات المطلوبة في الوقت المناسب في تجنب الإصلاحات المكلفة وتوقف الإنتاج وتشويه السمعة.

على عكس تقنية مسبار اللمس، فإن تقنية NANOVEA ملفات التعريف البصرية إجراء عمليات مسح سطحي ثلاثية الأبعاد بدون أي اتصال، مما يسمح بإجراء قياسات سريعة ودقيقة وغير مدمرة للأشكال المعقدة بأعلى دقة.

هدف القياس

في هذا التطبيق ، نعرض NANOVEA HS2000 ، ملف تعريف ثلاثي الأبعاد غير متصل بجهاز استشعار عالي السرعة ، يقوم بإجراء فحص شامل للسطح للأبعاد ونصف القطر والخشونة. 

كل ذلك في أقل من 40 ثانية.

نانوفيا

HS2000

نموذج CAD

يعد القياس الدقيق للأبعاد وخشونة السطح للجزء المُشغل آليًا أمرًا بالغ الأهمية للتأكد من أنه يلبي المواصفات المطلوبة والتفاوتات والتشطيبات السطحية. فيما يلي عرض للنموذج ثلاثي الأبعاد والرسم الهندسي للجزء المراد فحصه. 

عرض اللون الكاذب

تتم مقارنة عرض اللون الخاطئ لنموذج CAD وسطح الجزء الممسوح ضوئيًا في الشكل 3. يمكن ملاحظة اختلاف الارتفاع على سطح العينة من خلال التغيير في اللون.

يتم استخراج ثلاثة ملفات تعريف ثنائية الأبعاد من المسح السطحي ثلاثي الأبعاد كما هو موضح في الشكل 2 لمزيد من التحقق من تحمل الأبعاد للجزء المشكل.

مقارنة ونتائج الملامح

يتم عرض الملفات الشخصية من 1 إلى 3 في الأشكال من 3 إلى 5. ويتم إجراء فحص التسامح الكمي من خلال مقارنة الملف الشخصي المقاس بنموذج CAD لدعم معايير التصنيع الصارمة. الملف الشخصي 1 والملف الشخصي 2 يقيسان نصف قطر المناطق المختلفة على الجزء المشكل المنحني. اختلاف ارتفاع الملف الشخصي 2 هو 30 ميكرومتر على طول 156 ملم والذي يلبي متطلبات التفاوت المطلوبة ± 125 ميكرومتر. 

من خلال إعداد قيمة حد التسامح ، يمكن لبرنامج التحليل تحديد نجاح أو فشل الجزء المُشغل آليًا.

فحص أجزاء الماكينة بمقياس ملف التعريف

تلعب خشونة وتوحيد سطح الجزء المشكل دورًا مهمًا في ضمان جودته ووظائفه. الشكل 6 عبارة عن مساحة سطح مستخرجة من الفحص الرئيسي للجزء المشكل والذي تم استخدامه لتحديد تشطيب السطح. تم حساب متوسط خشونة السطح (Sa) ليكون 2.31 ميكرومتر.

خاتمة

في هذه الدراسة ، أظهرنا كيف يقوم NANOVEA HS2000 Non-Contact Profiler المجهز بجهاز استشعار عالي السرعة بإجراء فحص شامل للسطح للأبعاد والخشونة. 

تمكن عمليات المسح عالية الدقة المستخدمين من قياس التشكل التفصيلي والميزات السطحية للأجزاء المصنعة ومقارنتها كميًا بنماذج CAD الخاصة بهم. الجهاز قادر أيضًا على اكتشاف أي عيوب بما في ذلك الخدوش والشقوق. 

يعمل تحليل الكنتور المتقدم كأداة لا مثيل لها ليس فقط لتحديد ما إذا كانت الأجزاء المصنعة تفي بالمواصفات المحددة ، ولكن أيضًا لتقييم آليات فشل المكونات البالية.

تمثل البيانات الموضحة هنا جزءًا فقط من الحسابات الممكنة باستخدام برنامج التحليل المتقدم الذي يأتي مزودًا بكل ملف تعريف بصري NANOVEA.

 

الآن ، لنتحدث عن طلبك