アメリカ/グローバル: +1-949-461-9292
ヨーロッパ+39-011-3052-794
お問い合わせ

カテゴリープロフィロメトリー|ステップハイトとシックネス

 

3Dプロフィロメトリーによるガラスファイバー表面形状測定

ファイバーガラス表面トポグラフィー

3Dプロフィロメトリーによる

作成者

CRAIG LEISING

はじめに

ガラス繊維は、ガラスを極細に加工した素材である。繊維強化ポリマー(FRP)、ガラス繊維強化プラスチック(GRP)などと呼ばれ、多くのポリマー製品の補強材として使用されている。

品質管理における表面形状検査の重要性

ガラス繊維強化材には多くの用途がありますが、ほとんどの用途において可能な限り強度を高めることが極めて重要です。ガラス繊維複合材料は、重量に対する強度が最も高い材料の一つであり、場合によっては鋼鉄よりも高い強度を持つこともあります。高い強度の他に、露出した表面積をできるだけ小さくすることも重要です。グラスファイバーの表面積が大きいとケミカル・アタックや材料の膨張に対して構造体がより脆弱になる可能性があります。そのため、表面検査は品質管理生産において非常に重要です。

測定目的

このアプリケーションでは、ナノビアST400 を使用して、ガラス繊維複合材料の表面の粗さと平坦さを測定しています。これらの表面特性を定量化することで、より強く、より長持ちするガラスファイバー複合材料の製造や最適化が可能になります。

ナノビア

ST400

測定パラメータ

プローブ 1mm
取得率300Hz
アベレージング1
測定面5mm×2mm
ステップサイズ5 µm x 5 µm
スキャンニングモード一定速度

プローブ仕様

測定範囲 RANGE1mm
Z RESOLUTION 25nm
Z軸正確性200nm
水平分解能 2 μm

結果

偽色表示

3次元表面平坦度

3次元表面粗さ

15.716 μm計算上平均高さ
スク19.905 μm平方根高さ
Sp116.74 μm最大ピーク高
エスブイ136.09 μmピットの最大高さ
エスエス252.83 μm最大高さ
エスケープ0.556歪度
3.654クルトーシス

まとめ

結果が示すように、NANOVEA ST400 Optical プロファイラー グラスファイバー複合材表面の粗さと平坦度を正確に測定することができました。データは、ファイバー複合材料の複数のバッチにわたって、または一定期間にわたって測定され、さまざまなファイバーグラス製造プロセスとそれらが時間の経過とともにどのように反応するかについての重要な情報を提供します。したがって、ST400 はグラスファイバー複合材料の品質管理プロセスを強化するための実行可能なオプションです。

さて、次はアプリケーションについてです。

NANOVEAによるプロフィロメータを用いた輪郭計測

ラバートレッドコンター測定

ラバートレッドコンター測定

もっと詳しく

 

 

 

 

 

 

 

 

 

 

 

 

 

ラバートレッド輪郭測定

3D光学式プロファイラによる

ゴムトレッドの輪郭測定 - NANOVEA Profiler

作成者

アンドレア・ハーマン

はじめに

ゴムの摩擦係数は、他の素材と同様、次のような関係にある。 は、その表面粗さの一部である。車載用タイヤでは、路面とのトラクションが非常に重要です。これには、表面の粗さとタイヤのトレッドの両方が関わっている。この研究では、ゴムの表面とトレッドの粗さと寸法を解析しています。

* サンプル

インポータンス

3次元非接触形状計測の

ゴム研究用

タッチプローブや干渉計などの他の技術とは異なり、NANOVEA の 3D非接触光学式プロファイラー 軸色収差を使用して、ほぼあらゆる表面を測定します。 

プロファイラのオープンステージは、様々なサイズの試料に対応し、試料調製は不要です。ナノからマクロレンジの形状を、試料の反射や吸収の影響を受けずに、1回のスキャンで検出することができます。さらに、ソフトウェアで結果を操作することなく、高い表面角度を測定できる高度な機能を備えています。

透明、不透明、鏡面、拡散、研磨、粗面など、あらゆる材質を簡単に測定できます。NANOVEA 3D非接触プロファイラの測定技術は、2Dと3Dを組み合わせた利点とともに、表面研究を最大限に活用するための理想的で幅広い、ユーザーフレンドリーな機能を提供します。

測定目的

このアプリケーションでは、NANOVEA ST400を紹介しています。 3D非接触光学式プロファイラによる測定。 ゴムタイヤの表面と溝の部分です。

を表すのに十分な大きさの試料表面積を持つ。 タイヤ表面全体を無作為に選択 この研究のために 

ゴムの特性を定量的に把握するために 3D解析ソフトウェア「NANOVEA Ultra」を使って 輪郭の寸法、深さを測定します。 表面の粗さと現像面積

ナノビア

ST400

ANALYSIS タイヤトレッド

踏面の3Dビューとフォールスカラービューは、3D表面設計のマッピングの価値を示しています。これは、さまざまな角度から踏面のサイズと形状を直接観察するためのわかりやすいツールをユーザーに提供します。高度な輪郭解析とステップハイト解析は、どちらもサンプルの形状やデザインの正確な寸法を測定するための非常に強力なツールです

アドバンストコンターアナリシス

ステップ高さ解析

ANALYSIS ラバーサーフェス

ゴム表面は、例として以下の図に示すように、内蔵のソフトウェアツールを使って多くの方法で定量化することができます。表面粗さは2.688 μm、展開面積対投影面積は9.410 mm² 対 8.997 mm²であることが観察されます。この情報により、異なるゴム配合、あるいは表面摩耗の程度が異なるゴムでも、表面仕上げとトラクションの関係を調べることができます。

まとめ

今回のアプリケーションでは、NANOVEAの 3D非接触光学式プロファイラで、ゴムの表面粗さとトレッド寸法を高精度に評価することができます。

データでは、表面粗さ2.69μm、現像面積9.41mm²、投影面積9mm²となっています。 ゴム製トレッドの様々な寸法と半径は も測定した。

この研究で示された情報は、トレッドの設計や配合、あるいは摩耗の程度が異なるゴムタイヤの性能を比較するために利用することができます。 ここに掲載されているデータは、ほんの一部です。 の計算は、Ultra 3D解析ソフトウェアで利用可能です。

さて、次はアプリケーションについてです。

3D光学プロファイラによる魚鱗表面解析

3D光学プロファイラによる魚鱗表面解析

詳細はこちら

魚鱗面解析

3D OPTICAL PROFILERを使用して

魚鱗形状測定装置

作成者

アンドレア・ノビツキー

はじめに

NANOVEAを用いて魚鱗の形態や模様などを研究 3D非接触オプティカルプロファイラー。この生体サンプルの繊細な性質と、その非常に小さく角度の高い溝も、プロファイラーの非接触技術の重要性を強調しています。鱗の溝は環状と呼ばれ、これを研究することで魚の年齢を推定したり、木の年輪と同様に成長速度の異なる時期を区別したりすることもできます。これは乱獲を防ぐために野生の魚の個体数を管理する上で非常に重要な情報です。

3D非接触プロフィロメトリの生物学的研究への重要性

タッチプローブや干渉計などの他の技術とは異なり、軸色法を用いた3D非接触光学式プロファイラでは、ほぼすべての表面を測定することができます。サンプルサイズは、オープンステージのため大きく変化し、サンプルの前処理は必要ありません。ナノからマクロレンジの表面形状を、試料の反射や吸収の影響を受けずに測定することができます。この装置では、ソフトウェアで結果を操作することなく、高い表面角度を測定できる高度な機能を備えています。透明、不透明、鏡面、拡散、研磨、粗面など、どのような材料でも簡単に測定することができます。この技術は、2Dおよび3D機能を組み合わせた利点とともに、表面研究を最大限に活用するための理想的で幅広い、使いやすい機能を提供します。

測定目的

このアプリケーションでは、高速センサーを搭載し、スケールの表面を総合的に解析する3D非接触プロファイラー、NANOVEA ST400を紹介します。

この装置では、中央部の高解像度スキャンとともに、サンプル全体をスキャンしています。比較のため、スケールの外側と内側の表面粗さも測定されました。

ナノビア

ST400

外枠の3D&2D表面キャラクタリゼーション

外側スケールの3Dビューとフォールスカラービューでは、指紋や木の年輪のような複雑な構造を見ることができます。これにより、ユーザーはスケールの表面特性を様々な角度から直接観察することができる分かりやすいツールを得ることができます。また、外側と内側を比較しながら、外側スケールの様々な測定値を表示します。

魚群探知機 3Dビュープロフィロメーター
魚鱗走査型ボリューム3Dプロフィロメーター
魚群探知機 ステップハイト3D光学式プロファイラ

表面粗さの比較

魚鱗プロフィロメーター 3Dスキャニング

まとめ

このアプリケーションでは、NANOVEA 3D非接触光学式プロファイラが、魚の鱗をさまざまな方法で特性評価できることを示しました。 

鱗の外側と内側は、表面粗さだけで簡単に区別でき、粗さの値はそれぞれ15.92μmと1.56μmである。さらに、鱗の外表面にある溝(サーキュレーション)を分析することで、魚の鱗について正確な情報を得ることができます。中心点から帯状のサークルの距離を測定したところ、サークルの高さは平均で約58μmであることもわかりました。 

ここに掲載したデータは、解析ソフトで利用できる計算の一部に過ぎません。

さて、次はアプリケーションについてです。

フレネルレンズトポグラフィー

フレネルレンズ

3D形状測定による寸法

作成者

Duanjie Li & Benjamin Mell

はじめに

レンズは、光を透過・屈折させる軸対称の光学デバイスです。単純なレンズは、光を収束または発散させるための単一の光学部品で構成されています。球面はレンズを作るには理想的な形状ではないが、ガラスを研磨して作ることができる最も単純な形状としてよく使われる。

フレネルレンズは、同心円状のリングを並べたもので、幅が数千分の一インチと小さい単純なレンズの薄い部分である。フレネルレンズは、同じ光学特性を持つ従来のレンズに比べて、大口径で焦点距離が短く、コンパクトに設計されているため、必要な重量や材料の体積が少なくて済む。フレネルレンズの形状が薄いため、光の吸収による損失が非常に少ない。

フレネルレンズ検査における3D非接触形状計測の重要性

フレネル レンズは、自動車産業、灯台、太陽エネルギー、航空母艦の光学着陸システムで広く使用されています。透明なプラスチックからレンズを成形または打ち抜き加工することにより、製造のコスト効率を高めることができます。フレネル レンズのサービス品質は、主に同心リングの精度と表面品質に依存します。 NANOVEA はタッチプローブ技術とは異なり、 光学プロファイラー 表面に触れずに 3D 表面測定を実行できるため、新たな傷ができるリスクが回避されます。クロマティック ライト技術は、さまざまな形状のレンズなど、複雑な形状を正確にスキャンするのに最適です。

フレネルレンズ回路図

透明プラスチックフレネルレンズは、成形またはスタンピングによって製造することができます。正確で効率的な品質管理は、不良品の金型やスタンプを明らかにするために重要です。同心円の高さとピッチを測定し、その値をレンズメーカーが指定する仕様値と比較することで、製造上のばらつきを検出することができます。

レンズのプロファイルを正確に測定することで、金型やスタンプがメーカーの仕様に合うように適切に加工されます。さらに、スタンプは時間の経過とともに徐々に磨耗し、初期の形状を失う可能性があります。レンズメーカーの仕様から一貫して逸脱している場合は、金型の交換が必要であることを示すポジティブな兆候です。

測定目的

本アプリケーションでは、複雑な形状の光学部品の3次元形状を包括的に解析する高速センサ搭載の3次元非接触プロファイラ「NANOVEA ST400」を紹介します。

ナノビア

ST400

今回使用した2.3インチ×2.3インチのアクリルフレネルレンズは、以下のような構成になっています。 

同心円状のリングと複雑な鋸歯状の断面形状が特徴です。 

焦点距離は1.5インチ、有効径は2.0インチです。 

1インチあたり125本の溝があり、屈折率は1.49です。

NANOVEA ST400でフレネルレンズをスキャンすると、同心円のリングの高さが中心から外側に向かうにつれて顕著に増加していることがわかります。

2D FALSE COLOR

高さ方向の表現

3D VIEW

抽出されたプロファイル

ピーク&バレイ

プロファイルの寸法解析

まとめ

このアプリケーションでは、非接触光学式プロファイラ「NANOVEA ST400」がフレネルレンズの表面形状を正確に測定することを紹介しています。 

複雑なセレーション形状から、高さとピッチの寸法をNANOVEA解析ソフトウェアで正確に決定することができます。ユーザーは、製造したレンズのリングの高さとピッチの寸法を理想的なリングの仕様と比較することにより、製造金型やスタンプの品質を効果的に検査することができます。

ここに掲載したデータは、解析ソフトで利用できる計算の一部に過ぎません。 

半導体、マイクロエレクトロニクス、太陽電池、光ファイバー、自動車、航空宇宙、冶金、機械加工、コーティング、医薬品、バイオメディカル、環境などの分野で、ほぼあらゆる表面を測定するナノベアの光学式プロファイラ。

 

さて、次はアプリケーションについてです。

スクラッチテストによる塗膜故障の把握

はじめに

材料の表面処理は、装飾的な外観から、摩耗、腐食、その他の攻撃から基材を保護することまで、さまざまな機能的用途において重要な役割を担っています。コーティングの品質と寿命を決定する重要な要素は、その凝集力と接着力である。

ここをクリックしてお読みください

太陽電池の表面粗さと特徴

ソーラーパネルテストの重要性

太陽電池のエネルギー吸収を最大化することは、再生可能な資源としてこの技術が生き残るための鍵である。何層ものコーティングとガラスの保護により、太陽電池が機能するために必要な光の吸収、透過、反射を可能にしている。一般消費者向けの太陽電池のほとんどは15~18%の効率で動作するため、そのエネルギー出力を最適化することは継続的な戦いである。


表面の粗さが光の反射率に極めて重要な役割を果たすことは、研究によって明らかになっている。ガラスの初期層は、光の反射を軽減するために可能な限り平滑でなければならないが、その後の層はこのガイドラインに従わない。それぞれの空乏ゾーンで光が散乱する可能性を高め、セル内での光の吸収を増加させるために、各コーティングの界面にはある程度の粗さが必要である1。これらの領域の表面粗さを最適化することで、太陽電池がその能力を最大限に発揮できるようになります。ナノベアHS2000高速センサーを使用すれば、表面粗さを迅速かつ正確に測定することができます。



測定目的

この研究では、ナノベアの能力を紹介する。 プロフィロメーター 太陽電池の表面粗さと幾何学的特徴を測定することにより、高速センサー付きHS2000を使用します。このデモンストレーションでは、ガラスで保護されていない単結晶太陽電池を測定しますが、この方法は他のさまざまなアプリケーションにも使用できます。




試験方法と手順

太陽電池の表面測定には、以下の試験パラメータを使用した。




結果および考察

下に描かれているのは、太陽電池の2Dフォールスカラー図と、それぞれの高さパラメータを持つ表面の領域抽出です。両方の表面にガウシアンフィルターを適用し、抽出された領域を平坦化するために、より積極的なインデックスを使用しました。これにより、カットオフ指数より大きな形状(またはうねり)は除外され、太陽電池の粗さを表す特徴が残されます。











グリッドラインの幾何学的特性を測定するために、グリッドラインの方向に対して垂直なプロファイルを撮影したのが次の図である。グリッドラインの幅、段差、ピッチは、太陽電池の任意の位置で測定することができます。









結論





この研究では、単結晶太陽電池の表面粗さと特徴を測定するナノベア HS2000 ラインセンサーの能力を展示することができました。複数のサンプルの正確な測定を自動化し、合否判定を設定できるナノベアラインセンサは、品質管理検査に最適な選択肢です。

参考

1 ショルツ,ルボミールラダニ,リボルミュレロヴァ,ヤルミラ"Influence of Surface Roughness on Optical Characteristics of Multilayer Solar Cells " Advances in Electrical and Electronic Engineering, vol.12, no.6, 2014, pp.631-638.

さて、次はアプリケーションについてです。

回転摩耗と直線摩耗、COFは?(ナノベーストライボメータを用いた総合的検討)

摩耗とは、反対側の表面の機械的作用の結果として、表面上の材料が除去および変形するプロセスです。一方向の滑り、回転、速度、温度など、さまざまな要因の影響を受けます。摩耗、トライボロジーの研究は、物理学、化学から機械工学、材料科学に至るまで、多くの分野に及びます。摩耗の複雑な性質には、凝着摩耗、摩耗摩耗、表面疲労、フレッティング摩耗、エローシブ摩耗などの特定の摩耗メカニズムまたはプロセスに向けた個別の研究が必要です。ただし、「産業摩耗」には通常、複数の摩耗メカニズムが相乗して発生します。

直線往復摩耗試験と回転 (ピンオンディスク) 摩耗試験は、材料の滑り摩耗挙動を測定するために広く使用されている ASTM 準拠のセットアップです。摩耗試験方法の摩耗率の値は、材料の組み合わせの相対的な順位を予測するためによく使用されるため、さまざまな試験設定を使用して測定された摩耗率の再現性を確認することが非常に重要です。これにより、ユーザーは文献で報告されている摩耗率の値を注意深く検討することができます。これは材料の摩擦学的特性を理解する上で重要です。

続きを読む

3次元非接触形状測定機Jr25のポータビリティとフレキシビリティ

サンプルの表面を理解し定量化することは、品質管理や研究を含む多くのアプリケーションにとって重要です。表面を研究するには、サンプルをスキャンして画像化するために表面形状計がよく使用されます。従来の形状測定装置の大きな問題は、従来とは異なるサンプルに対応できないことです。従来とは異なるサンプルの測定では、サンプルのサイズ、形状、サンプルを移動できないこと、またはその他の不便なサンプル前処理により、困難が発生する可能性があります。 Nanoveaのポータブル 3D非接触表面形状計JR シリーズは、さまざまな角度からサンプル表面をスキャンする機能とその携帯性により、これらの問題のほとんどを解決できます。

非接触式プロフィロメーターJr25について読む!

500nm ガラスステップハイト。 非接触型プロフィロメトリーによる高精度化

表面キャラクタリゼーションは、現在活発に研究されているテーマである。材料の表面は、材料と環境の間で物理的・化学的な相互作用が起こる領域であるため、重要である。そのため、表面を高解像度で画像化することが望まれてきました。これにより、科学者は表面の微細な部分まで視覚的に観察することができるようになります。一般的な表面画像データには、地形、粗さ、横方向寸法、縦方向寸法が含まれます。耐荷重表面の特定、製造された微細構造の間隔と段差、表面の欠陥などは、表面イメージングから得られる応用例である。しかし、すべてのサーフェスイメージング技術が同じように作られているわけではありません。

500nm ガラスステップハイト。非接触型プロフィロメトリーによる高精度化

3Dプロフィロメトリーによるウェハーコーティング厚み計測

ウェーハの膜厚測定は重要です。シリコンウェーハは、膨大な数の産業で使用される集積回路やその他のマイクロデバイスの製造に広く使用されています。より薄く、より滑らかなウェーハとウェーハコーティングが常に求められているため、Nanovea 3D非接触式厚み測定機が使用されています。 プロフィロメーター は、あらゆる表面のコーティングの厚みと粗さを定量化するための優れたツールです。この記事では、3D非接触プロフィロメータの能力を実証するために、コーティングされたウェハサンプルから測定されたものです。

3Dプロフィロメトリーによるウェハーコーティング厚み計測