カテゴリースクラッチテスト|凝集破壊
炭化ケイ素ウェハーコーティングの機械的特性
炭化ケイ素ウェハーコーティングの機械的特性を理解することは、非常に重要です。マイクロエレクトロニクスデバイスの製造工程は、300 以上の異なる処理工程があり、6 週間から 8 週間かかることもあります。この工程では、どの工程で失敗しても時間と費用の損失につながるため、ウェハー基板は製造の極限状態に耐えられる必要があります。のテストは 硬度また、ウェーハの接着性、耐スクラッチ性、COF/磨耗率は、製造工程や塗布工程で課せられる条件に耐え、故障が発生しないように一定の条件を満たす必要があります。
ポリマーコーティングのマイクロスクレイプテスト
スクラッチテスト は,塗膜の凝集力と接着力を評価するための最も広く適用されている方法の 1 つとして発展してきた。印加荷重が徐々に増加するにつれてある種の皮膜破壊が起こる臨界荷重は,皮膜の接着性・凝集性を判断し比較するための信頼できるツールとして広く認識されている。スクラッチ試験用の圧子としては、円錐形のロックウェルダイヤモンド圧子が最も一般的に使用されている。しかし、シリコンウェハーのような脆い基板上に形成された柔らかいポリマーコーティングに対してスクラッチテストを行う場合、円錐形の圧子は亀裂や剥離を生じさせるのではなく、溝を形成しながらコーティングを突き進む傾向があります。しかし、荷重が大きくなると、脆いシリコンウェハーにクラックが発生する。したがって、脆性基板上のソフトコーティングの凝集力または接着力を評価する新しい技術の開発が不可欠である。
ASTM D7187 ナノスクラッチによる温度効果
ASTM D7187では、塗料の傷や汚れに対する耐性が、最終用途において重要な役割を果たします。自動車用塗料は傷の影響を受けやすいため、メンテナンスや修理が難しく、コストがかかります。最高の耐スクラッチ/マー性を達成するために、プライマー、ベースコート、クリアコートのさまざまなコーティング構造が開発されてきました。 ナノスクラッチテスト は,ASTM D7187 に記載されているように,塗膜のスクラッチ/マー挙動のメカニズ ム的側面を測定するための標準試験法として開発されたものである。.スクラッチテストでは,弾性変形,塑性変形,破壊という異なる素変形機構が異なる荷重で発生する。これにより,塗膜の耐塑性,耐破壊性を定量的に評価することができる。
ナノスクラッチ試験によるグルーブドステントコーティングの不具合
薬剤溶出性ステントは、ステント技術における新しいアプローチである。生分解性で生体適合性のあるポリマーコーティングを持ち、局所動脈でゆっくりと連続的に薬剤を放出し、内膜肥厚を抑制して動脈が再び閉塞するのを防ぐことができます。 大きな懸念のひとつは、薬剤溶出層を担持するポリマーコーティングが金属製ステント基材から剥離することである。このコーティングの基材への密着性を向上させるため、ステントはさまざまな形状に設計されている。特に本研究では、ポリマーコーティングがメッシュワイヤーの溝の底に位置するため、接着力測定に大きな課題をもたらしている。ポリマーコーティングと金属基材との界面強度を定量的に測定するために、信頼性の高い技術が必要とされています。ステントのメッシュは特殊な形状で直径が小さいため(人間の髪の毛ほど)、試験位置を特定するための超微細なX-Y横方向精度と、試験中の荷重と深さを適切に制御・測定する必要があります。
DLCのマクロ接着不良
ビットやベアリングなどこのような過酷な条件下では、コーティング/基材システムの十分な凝集力と接着力が不可欠となる。ターゲットとするアプリケーションに最適な金属基板を選択し、DLCの一貫したコーティングプロセスを確立するためには、異なるDLCコーティングシステムの凝集力と接着不良を定量的に評価する信頼性の高い手法を開発することが重要である。
スクラッチ試験後の塗膜の耐食性
耐食コーティングは、摩耗や侵食の激しい環境にさらされることが多いため、十分な機械的強度を有している必要があります。例えば、オイルサンドの研磨材は常にパイプの内側を摩耗させ、パイプの完全性を徐々に損ない、破損に至る可能性がある。自動車産業では、自動車についた傷の位置で腐食が起こります。
特に、冬場の凍結した路面では、塩分を含んだ塗料が塗布される。そのため、塗膜の劣化を測定するための定量的で信頼性の高いツールが求められています。
保護膜のスクラッチテストとその耐食性の影響について、意図された用途に最適なコーティングを選択するために必要である。