CONTACT US

Category: Roughness & Finish

 

Surface Finish Inspection of Wood Flooring

In various industries, the purpose of a wood finish is to protect the wooden surface from various types of damage such as chemical, mechanical or biological and/or provide a specific visual aesthetic. For manufacturers and buyers alike, quantifying surface characteristics of their wood finishes can be vital to the quality control or optimization of finishing processes for wood. In this application, we will explore the various surface features that can be quantified using a Nanovea 3D Non-Contact Profilometer.

Watch our Application Note Video!

 

Click to read the full application note!

A Better Look at Paper

Paper has played a large role in information distribution since its invention in the 2nd century [1]. Paper consists of intertwined fibers, typically obtained from trees, that have been dried into thin sheets. As a medium for information storage, paper has allowed the spread of ideas, art, and history over long distances and through passing time.

Today, paper is commonly used for currency, books, toiletries, packaging, and more. Paper is processed in different ways to obtain properties to match their application. For example, the visually appealing, glossy paper from a magazine is different compared to rough, cold-pressed watercolor paper. The method in which paper is produced will affect the surface properties of the paper. This influences how ink (or other medium) will settle onto and appear on the paper. To inspect how different paper processes affect surface properties, Nanovea inspected the roughness and texture of various types of paper by conducting a large area scan with our 3D Non-Contact Profilometer.

Click to learn about the Surface Roughness of Paper!

Roughness Mapping Inspection Using 3D Profilometry

Surface defects of products derive from materials processing and product manufacturing. In-line surface quality inspection ensures the tightest quality control of the end products. The Nanovea 3D Non-Contact Profilometers utilize chromatic confocal technology with unique capability to determine roughness mapping of a sample without contact. The line sensor enables scanning the 3D profile of a large surface at a high speed. The roughness threshold calculated real-time by the analysis software serves as a fast and reliable pass/fail tool.

Roughness Mapping Inspection Using 3D Profilometry

Looking for a solution?