COVID-19: In these troubled times, NANOVEA devotes necessary resources to maintain all of the essential services you count on. Stay safe!

Category: Loss and Storage Modulus


Precise Localized Glass Transition with Nanoindentation DMA

Imagine a scenario where a bulk sample is uniformly heated at a constant rate. As a bulk material heats up and approaches its melting point, it will start to lose its rigidity. If periodic indentations (hardness tests) are conducted at the same target force, the depth of each indent should be constantly increasing since the sample is becoming softer (see figure 1). This continues until the sample begins to melt. At this point, a large increase in the depth per indent will be observed. Using this concept, phase change in a material can be observed by using dynamic oscillations with a fixed force amplitude and measuring its displacement, i.e. Dynamic Mechanical Analysis (DMA).   Read about Precise Localized Glass Transition!

Viscoelastic Analysis of Rubber

Tires are subjected to cyclical high deformations when vehicles are running on the road. When exposed to harsh road conditions, the service lifetime of the tires is jeopardized by many factors, such as the wear of the thread, the heat generated by friction, rubber aging, and others.

As a result, tires usually have composite layer structures made of carbon-lled rubber, nylon cords, and steel wires, etc. In particular, the composition of rubber at different areas of the tire systems is optimized to provide different functional properties, including but not limited to wear resistant thread, cushion rubber layer, and hard rubber base layer.

A reliable and repeatable test of the viscoelastic behavior of rubber is critical in quality control and R&D of new tires, as well as evaluation of the life span of old tires. Dynamic Mechanical Analysis(DMA) during Nanoindentation is a technique of characterizing the viscoelasticity. When controlled oscillatory stress is applied, the resulting strain is measured, allowing users to determine the complex modulus of the tested materials.


Click to read the full Application Note!

Dynamic Mechanical Analysis With Nanoindentation

The quality of corks depends heavily on its mechanical and physical property. Its ability to seal wine can be identified as these important factors: flexibility, insulation, resilience, and impermeability to gas and liquids. By conducting dynamic mechanical analysis (DMA) testing, its flexibility and resilience properties can be gauged with a quantifiable method. These properties are characterized with Nanovea Mechanical Tester’s Nanoindentaion in the form of Young’s modulus, storage modulus, loss modulus, and tan delta (tan (δ)). Other data that can be gathered from DMA testing are phase shift, hardness, stress, and strain of the material.

Dynamic Mechanical Analysis With Nanoindentation

Want us to test your samples?

Please fill up our form and we will reach out to you soon!