CONTACT US

Category: Hot Temperature Mechanical Tester

 

Precise Localized Glass Transition with Nanoindentation DMA

Imagine a scenario where a bulk sample is uniformly heated at a constant rate. As a bulk material heats up and approaches its melting point, it will start to lose its rigidity. If periodic indentations (hardness tests) are conducted at the same target force, the depth of each indent should be constantly increasing since the sample is becoming softer (see figure 1). This continues until the sample begins to melt. At this point, a large increase in the depth per indent will be observed. Using this concept, phase change in a material can be observed by using dynamic oscillations with a fixed force amplitude and measuring its displacement, i.e. Dynamic Mechanical Analysis (DMA).   Read about Precise Localized Glass Transition!

Teflon Mechanical Properties at High Temperature

At elevated temperatures, heat changes teflon mechanical properties such as the hardness and viscoelasticity, which may result in mechanical failures. A reliable measurement of the thermo-mechanical behavior of polymeric materials is in need to quantitatively evaluate the candidate materials for high temperature applications. The Nano module of the Nanovea Mechanical Tester studies the Hardness, Young’s Modulus and Creep by applying the load with a high-precision piezo and measuring the evolution of force and displacement. An advanced oven creates a uniform temperature surrounding the indentation tip and the sample surface throughout the nanoindentation test so as to minimize the effect of thermal drift.

Teflon Mechanical Properties at High Temperature Using Nanoindentation

Thermomechanical Analysis of Solder Using Nanoindentation

Solder joints are subjected to thermal and/or external stress when the temperature exceeds 0.6 Tm where Tm is the melting point of the material in Kelvin. The creep behavior of solders at elevated temperatures can directly influence the reliability of solder interconnections As a result, a reliable and quantitative thermomechanical analysis of the solder at different temperatures is in need. The Nano module of the Nanovea Mechanical Tester applies the load by a high-precision piezo and directly measures the evolution of force and displacement. The advanced heating oven provides a uniform temperature at the tip and sample surface, which ensures measuring accuracy and minimizes the influence of thermal drift.

Thermomechanical Analysis of Solder Using Nanoindentation

 

Looking for a solution?