الولايات المتحدة الأمريكية / العالمية: 9292-461-949-1+
أوروبا: 794-3052-011-39+
تراسل معنا

التصنيف: الاختبارات الميكانيكية

 

زحف تشوه البوليمرات باستخدام Nanoindentation

زحف تشوه البوليمرات باستخدام Nanoindentation

يتعلم أكثر

تشوه الكريب

من البوليمرات التي تستخدم تحديد النانو

أُعدت بواسطة

دوانجي لي، دكتوراه

مقدمة

كمواد لزجة مرنة ، غالبًا ما تخضع البوليمرات لتشوه يعتمد على الوقت تحت حمولة معينة مطبقة ، تُعرف أيضًا باسم الزحف. يصبح الزحف عاملاً حاسمًا عندما يتم تصميم الأجزاء البوليمرية بحيث تتعرض لضغط مستمر ، مثل المكونات الهيكلية والوصلات والتركيبات وأوعية الضغط الهيدروستاتيكي.

أهمية قياس الكريب للبوليمرات

تلعب الطبيعة المتأصلة للزوجة المرنة دورًا حيويًا في أداء البوليمرات وتؤثر بشكل مباشر على موثوقية خدمتها. تؤثر الظروف البيئية مثل التحميل ودرجة الحرارة على سلوك زحف البوليمرات. غالبًا ما تحدث حالات فشل الزحف بسبب عدم الانتباه لسلوك الزحف المعتمد على الوقت لمواد البوليمر المستخدمة في ظل ظروف خدمة محددة. ونتيجة لذلك، من المهم تطوير اختبار موثوق وكمي للسلوكيات الميكانيكية اللزجة المرنة للبوليمرات. وحدة النانو في NANOVEA أجهزة فحوصات الميكانيكية يطبق الحمل باستخدام بيزو عالي الدقة ويقيس بشكل مباشر تطور القوة والإزاحة في الموقع. إن الجمع بين الدقة والتكرار يجعله أداة مثالية لقياس الزحف.

هدف القياس

في هذا التطبيق ، عرضنا ذلك
الفاحص الميكانيكي NANOVEA PB1000
في nanoindentation الوضع هو أداة مثالية
لدراسة الخواص الميكانيكية اللزجة المرنة
بما في ذلك الصلابة ، معامل يونغ
وزحف المواد البوليمرية.

نانوفيا

PB1000

شروط الاختبار

تم اختبار ثماني عينات مختلفة من البوليمر باستخدام تقنية المسافة النانوية باستخدام جهاز الاختبار الميكانيكي NANOVEA PB1000. مع زيادة الحمل خطيًا من 0 إلى 40 ملي نيوتن ، زاد العمق تدريجياً أثناء مرحلة التحميل. ثم تم قياس الزحف عن طريق تغيير عمق المسافة البادئة عند الحمل الأقصى البالغ 40 ملي نيوتن لمدة 30 ثانية.

اقصى حموله 40 ملي نيوتن
معدل التحميل
80 ميللي نيوتن / دقيقة
معدل التفريغ 80 ميللي نيوتن / دقيقة
وقت الكريب
30 ثانية

النوع الداخلي

بيركوفيتش

الماس

*إعداد اختبار nanoindentation

النتائج والمناقشة

يظهر مخطط الحمل مقابل الإزاحة لاختبارات المسافة النانوية على عينات بوليمر مختلفة في الشكل 1 وتتم مقارنة منحنيات الزحف في الشكل 2. تم تلخيص معامل الصلابة ومعامل يونغ في الشكل 3 ، كما يظهر عمق الزحف في الشكل 4. من الأمثلة في الشكل 1 ، تمثل الأجزاء AB و BC و CD لمنحنى إزاحة الحمل لقياس المسافة النانوية عمليات التحميل والزحف والتفريغ ، على التوالي.

أظهر Delrin و PVC أعلى صلابة من 0.23 و 0.22 جيجا باسكال ، على التوالي ، بينما يمتلك البولي إثيلين منخفض الكثافة أقل صلابة من 0.026 جيجا باسكال بين البوليمرات المختبرة. بشكل عام ، تظهر البوليمرات الأكثر صلابة معدلات زحف أقل. يتميز أنعم البولي إيثيلين منخفض الكثافة بأعلى عمق زحف يبلغ 798 نانومتر ، مقارنة بحوالي 120 نانومتر في Delrin.

تعتبر خصائص الزحف للبوليمرات حاسمة عند استخدامها في الأجزاء الهيكلية. من خلال قياس صلابة البوليمرات وزحفها بدقة ، يمكن الحصول على فهم أفضل لموثوقية البوليمرات المعتمدة على الوقت. يمكن أيضًا قياس الزحف ، وتغيير الإزاحة عند حمل معين ، في درجات حرارة ورطوبة مرتفعة مختلفة باستخدام جهاز الاختبار الميكانيكي NANOVEA PB1000 ، مما يوفر أداة مثالية للقياس الكمي والموثوق للسلوكيات الميكانيكية اللزجة للبوليمرات
في بيئة التطبيق الواقعية المحاكاة.

شكل ١: مؤامرات الحمل مقابل الإزاحة
من البوليمرات المختلفة.

الشكل 2: الزحف بحمل أقصاه 40 ملي نيوتن لمدة 30 ثانية.

الشكل 3: صلابة ومعامل يونغ للبوليمرات.

الشكل 4: زحف عمق البوليمرات.

خاتمة

في هذه الدراسة ، أظهرنا أن NANOVEA PB1000
يقيس الفاحص الميكانيكي الخواص الميكانيكية للبوليمرات المختلفة ، بما في ذلك الصلابة ومعامل يونغ والزحف. هذه الخصائص الميكانيكية ضرورية في اختيار مادة البوليمر المناسبة للتطبيقات المقصودة. أظهر Derlin و PVC أعلى صلابة من 0.23 و 0.22 جيجا باسكال على التوالي ، بينما يمتلك البولي إثيلين منخفض الكثافة أقل صلابة من 0.026 جيجا باسكال بين البوليمرات المختبرة. بشكل عام ، تظهر البوليمرات الأكثر صلابة معدلات زحف أقل. يُظهر أنعم البولي إيثيلين منخفض الكثافة أعلى عمق زحف يبلغ 798 نانومتر ، مقارنة بحوالي 120 نانومتر لديرلين.

توفر أجهزة اختبار NANOVEA الميكانيكية وحدات Nano و Micro متعددة الوظائف لا مثيل لها على منصة واحدة. تشتمل كل من وحدات Nano و Micro على جهاز اختبار الخدش واختبار الصلابة وأوضاع اختبار التآكل ، مما يوفر مجموعة الاختبارات الأكثر وحشية والأكثر سهولة في الاستخدام المتاحة على نظام واحد.

الآن ، لنتحدث عن طلبك

مادة متعددة الأطوار باستخدام Nanoindentation NANOVEA

المسافة النانوية المعدنية متعددة الأطوار

دراسة تعدين المواد متعددة الأطوار باستخدام المسافة النانوية

يتعلم أكثر

دراسة المعادن
من مواد متعددة

استخدام تحديد النانو

أُعدت بواسطة

دوانجي لي، دكتوراه & أليكسيس سيليستين

مقدمة

تدرس علم المعادن السلوك الفيزيائي والكيميائي للعناصر المعدنية ، وكذلك مركباتها وسبائكها. تتعرض المعادن التي تخضع لعمليات التشغيل ، مثل الصب والتزوير والدرفلة والبثق والتشغيل الآلي ، لتغييرات في مراحلها وبنيتها المجهرية وملمسها. تؤدي هذه التغييرات إلى خصائص فيزيائية متنوعة بما في ذلك الصلابة والقوة والمتانة والليونة ومقاومة التآكل للمادة. غالبًا ما يتم تطبيق علم المعادن لتعلم آلية تشكيل مثل هذه الأطوار المحددة والبنية الدقيقة والملمس.

أهمية الخصائص الميكانيكية المحلية لتصميم المواد

غالبًا ما تحتوي المواد المتقدمة على مراحل متعددة في بنية مجهرية خاصة وملمس لتحقيق الخصائص الميكانيكية المرغوبة للتطبيقات المستهدفة في الممارسة الصناعية. nanoindentation يتم تطبيقه على نطاق واسع لقياس السلوكيات الميكانيكية للمواد في المقاييس الصغيرة أنا ثانيا. ومع ذلك ، فإن التحديد الدقيق لمواقع محددة للتثليم في منطقة صغيرة جدًا أمر صعب ويستغرق وقتًا طويلاً. مطلوب إجراء موثوق وسهل الاستخدام لاختبار المسافة النانوية لتحديد الخصائص الميكانيكية لمراحل مختلفة من المادة بدقة عالية وقياسات في الوقت المناسب.

هدف القياس

في هذا التطبيق ، نقيس الخواص الميكانيكية لعينة ميتالورجية متعددة الأطوار باستخدام أقوى جهاز اختبار ميكانيكي: NANOVEA PB1000.

هنا ، نعرض قدرة PB1000 في إجراء قياسات المسافة النانوية على مراحل متعددة (حبيبات) لسطح عينة كبير بدقة عالية وسهولة في الاستخدام باستخدام وحدة التحكم المتقدمة في الموضع.

نانوفيا

PB1000

شروط الاختبار

في هذه الدراسة ، نستخدم عينة معدنية ذات مراحل متعددة. تم صقل العينة إلى سطح يشبه المرآة قبل اختبارات المسافة البادئة. تم تحديد أربع مراحل في العينة ، وهي المرحلة 1 والمرحلة 2 والمرحلة 3 والمرحلة 4 كما هو موضح أدناه.

تعد وحدة التحكم المتقدمة في المرحلة أداة تنقل عينة بديهية تقوم تلقائيًا بضبط سرعة حركة العينة تحت المجهر الضوئي بناءً على موضع الماوس. كلما ابتعد الماوس عن مركز مجال الرؤية ، زادت سرعة تحرك المرحلة نحو اتجاه الماوس. يوفر هذا طريقة سهلة الاستخدام للتنقل عبر سطح العينة بأكمله وتحديد الموقع المقصود للاختبار الميكانيكي. يتم حفظ إحداثيات مواقع الاختبار وترقيمها ، جنبًا إلى جنب مع إعدادات الاختبار الفردية الخاصة بهم ، مثل الأحمال ومعدل التحميل / التفريغ وعدد الاختبارات في الخريطة وما إلى ذلك. مجالات الاهتمام بالمسافات البادئة وإجراء جميع اختبارات المسافة البادئة في مواقع مختلفة في وقت واحد ، مما يجعلها أداة مثالية للاختبار الميكانيكي للعينات المعدنية ذات المراحل المتعددة.

في هذه الدراسة ، حددنا المراحل المحددة للعينة تحت المجهر الضوئي المدمج في نانوفيا جهاز اختبار ميكانيكي مرقم في شكل 1. يتم حفظ إحداثيات المواقع المحددة ، متبوعة باختبارات تحديد المسافة النانوية التلقائية كلها مرة واحدة في ظل ظروف الاختبار الملخصة أدناه

شكل ١: تحديد موقع NANOINDENTATION على سطح العينة.
نتائج: دلالات نانوية على مراحل مختلفة

يتم عرض المسافات البادئة في المراحل المختلفة للعينة أدناه. نظهر أن التحكم في الموقف الممتاز لمرحلة العينة في نانوفيا اختبار ميكانيكي يسمح للمستخدمين بتحديد الموقع المستهدف بدقة لاختبار الخواص الميكانيكية.

تظهر منحنيات الحمل والإزاحة التمثيلية للمسافات البادئة في الشكل 2، والصلابة المقابلة ومعامل يونغ محسوبة باستخدام طريقة أوليفر وفارثالثا يتم تلخيصها ومقارنتها بـ الشكل 3.


ال
المراحل 1 ، 2 ، 3 و 4 تمتلك متوسط صلابة ~ 5.4 و 19.6 و 16.2 و 7.2 جيجا باسكال ، على التوالي. الحجم الصغير نسبيًا لـ المراحل 2 يساهم في ارتفاع الانحراف المعياري للصلابة وقيم معامل يونغ.

الشكل 2: منحنيات تشريد الحمل
من NANOINDENTATIONS

الشكل 3: الصلابة والنموذج الشبابي لمراحل مختلفة

خاتمة

في هذه الدراسة ، عرضنا جهاز اختبار NANOVEA الميكانيكي الذي يقوم بقياسات المسافة النانوية على مراحل متعددة لعينة معدنية كبيرة باستخدام وحدة تحكم المرحلة المتقدمة. يسمح التحكم الدقيق في الموضع للمستخدمين بالتنقل بسهولة على سطح عينة كبير وتحديد مناطق الاهتمام مباشرة لقياسات المسافة النانوية.

يتم حفظ إحداثيات الموقع لجميع المسافات البادئة ثم يتم تنفيذها على التوالي. يجعل إجراء الاختبار هذا قياس الخواص الميكانيكية المحلية على نطاقات صغيرة ، على سبيل المثال العينة المعدنية متعددة الأطوار في هذه الدراسة ، والتي تستغرق وقتًا أقل بكثير وأكثر سهولة في الاستخدام. تعمل المراحل الصعبة 2 و 3 و 4 على تحسين الخواص الميكانيكية للعينة ، حيث تمتلك متوسط صلابة يبلغ حوالي 19.6 و 16.2 و 7.2 جيجا باسكال ، على التوالي ، مقارنة بـ ~ 5.4 جيجا باسكال في المرحلة 1.

تشتمل جميع وحدات Nano أو Micro أو Macro للأداة على المسافة البادئة المتوافقة مع ISO و ASTM وأوضاع اختبار الخدش والتآكل ، مما يوفر أوسع نطاق من الاختبارات وأكثرها سهولة في الاستخدام المتاح في نظام واحد. تعد مجموعة NANOVEA التي لا مثيل لها حلاً مثاليًا لتحديد النطاق الكامل من الخواص الميكانيكية للطلاء الرقيق أو السميك ، واللين أو الصلب ، والأغشية والركائز ، بما في ذلك الصلابة ، ومعامل يونغ ، ومتانة الكسر ، والالتصاق ، ومقاومة التآكل وغيرها الكثير.

أنا أوليفر ، مرحاض ؛ Pharr، GM، Journal of Materials Research.، Volume 19، Issue 1، Jan 2004، pp.3-20
ثانيا شوه ، كاليفورنيا ، المواد اليوم ، المجلد 9 ، العدد 5 ، مايو 2006 ، ص 32-40
ثالثا أوليفر ، مرحاض ؛ فار ، مدير عام ، مجلة أبحاث المواد ، المجلد 7 ، العدد 6 ، يونيو 1992 ، ص 1564-1583

الآن ، لنتحدث عن طلبك

التحليل الميكانيكي الديناميكي (DMA) مسح التردد على البوليمر

اكتساح تردد DMA

على البوليمر باستخدام تحديد النانو

أُعدت بواسطة

دوانجي لي ، دكتوراه

مقدمة

أهمية اختبار التحليل الميكانيكي الديناميكي التردد

غالبًا ما يؤدي التردد المتغير للإجهاد إلى اختلافات في المعامل المعقد، وهي خاصية ميكانيكية مهمة للبوليمرات. على سبيل المثال، تتعرض الإطارات لتشوهات دورية عالية أثناء سير المركبات على الطريق. يتغير تردد الضغط والتشوه مع تسارع السيارة إلى سرعات أعلى. مثل هذا التغيير يمكن أن يؤدي إلى اختلاف في خصائص اللزوجة المرنة للإطار، وهي عوامل مهمة في أداء السيارة. هناك حاجة إلى اختبار موثوق وقابل للتكرار للسلوك اللزج المرن للبوليمرات عند ترددات مختلفة. وحدة النانو في NANOVEA اختبار ميكانيكي يولد حملًا جيبيًا بواسطة مشغل بيزو عالي الدقة ويقيس بشكل مباشر تطور القوة والإزاحة باستخدام خلية تحميل فائقة الحساسية ومكثف. إن الجمع بين الإعداد السهل والدقة العالية يجعله أداة مثالية لمسح تردد التحليل الميكانيكي الديناميكي.

تُظهر المواد اللزجة المرنة خصائص لزجة ومرنة عند تعرضها للتشوه. تساهم السلاسل الجزيئية الطويلة في مواد البوليمر في خواصها المرنة اللزجة الفريدة ، أي مزيج من خصائص كل من المواد الصلبة المرنة والسوائل النيوتونية. يلعب كل من الإجهاد ودرجة الحرارة والتكرار وعوامل أخرى أدوارًا في خصائص المرونة اللزجة. التحليل الميكانيكي الديناميكي ، المعروف أيضًا باسم التحليل الميكانيكي الديناميكي (DMA) ، يدرس سلوك المرونة اللزجة والمعامل المعقد للمادة عن طريق تطبيق إجهاد جيبي وقياس تغير الانفعال.

هدف القياس

في هذا التطبيق، نقوم بدراسة خصائص اللزوجة المرنة لعينة إطار مصقول عند ترددات DMA مختلفة باستخدام أقوى جهاز اختبار ميكانيكي، NANOVEA PB1000، في nanoindentation وضع.

نانوفيا

PB1000

شروط الاختبار

الترددات (هرتز):

0.1, 1.5, 10, 20

وقت الخلط في كل تكرار.

50 ثانية

تذبذب الجهد

0.1 فولت

تحميل الجهد

1 فولت

نوع إندينتر

كروي

الماس | 100 ميكرومتر

النتائج والمناقشة

يسمح اكتساح تردد التحليل الميكانيكي الديناميكي عند الحد الأقصى للحمل بقياس سريع وبسيط لخصائص اللزوجة المرنة للعينة عند ترددات تحميل مختلفة في اختبار واحد. يمكن استخدام انزياح الطور واتساع موجات الحمل والإزاحة عند ترددات مختلفة لحساب مجموعة متنوعة من الخصائص الأساسية المطاطية اللزجة للمواد ، بما في ذلك معامل التخزين, معامل الخسارة و تان (δ) على النحو الملخص في الرسوم البيانية التالية. 

تتوافق ترددات 1 و 5 و 10 و 20 هرتز في هذه الدراسة مع سرعات تبلغ حوالي 7 و 33 و 67 و 134 كيلومترًا في الساعة. مع زيادة تردد الاختبار من 0.1 إلى 20 هرتز ، يمكن ملاحظة أن كلا من معامل التخزين ومعامل الخسارة يزدادان تدريجياً. ينخفض تان (δ) من ~ 0.27 إلى 0.18 مع زيادة التردد من 0.1 إلى 1 هرتز ، ثم يزداد تدريجياً إلى ~ 0.55 عند الوصول إلى التردد 20 هرتز. يسمح مسح تردد التحليل الميكانيكي الديناميكي (DMA) بقياس اتجاهات معامل التخزين ومعامل الفقد والتان (δ) ، والتي توفر معلومات حول حركة المونومرات والربط المتبادل وكذلك التزجج للبوليمرات. من خلال رفع درجة الحرارة باستخدام لوحة التسخين أثناء اكتساح التردد ، يمكن الحصول على صورة أكثر اكتمالاً لطبيعة الحركة الجزيئية في ظل ظروف اختبار مختلفة.

تطور الحمل والعمق

من SWEEP تردد DMA الكامل

LOAD & DEPTH مقابل الوقت بترددات مختلفة

معامل التخزين

بترددات مختلفة

وحدة الخسارة

بترددات مختلفة

تان (δ)

بترددات مختلفة

خاتمة

في هذه الدراسة ، عرضنا قدرة جهاز NANOVEA الميكانيكي في إجراء اختبار اكتساح التردد للتحليل الميكانيكي الديناميكي على عينة من الإطارات. يقيس هذا الاختبار خصائص اللزوجة المرنة للإطار عند ترددات مختلفة من الإجهاد. يُظهر الإطار زيادة في معامل التخزين والفقد مع زيادة تردد التحميل من 0.1 إلى 20 هرتز. يوفر معلومات مفيدة عن سلوكيات اللزوجة المرنة للإطار الذي يعمل بسرعات مختلفة ، وهو أمر ضروري في تحسين أداء الإطارات لركوب أكثر سلاسة وأمانًا. يمكن إجراء اختبار مسح التردد DMA في درجات حرارة مختلفة لتقليد بيئة العمل الواقعية للإطار في ظل ظروف جوية مختلفة.

في وحدة النانو لجهاز اختبار NANOVEA الميكانيكي ، يكون تطبيق الحمل مع الضغط السريع مستقلاً عن قياس الحمل الذي يتم بواسطة مقياس ضغط منفصل عالي الحساسية. يعطي هذا ميزة واضحة أثناء التحليل الميكانيكي الديناميكي حيث يتم قياس المرحلة بين العمق والحمل مباشرة من البيانات التي تم جمعها من المستشعر. حساب المرحلة مباشر ولا يحتاج إلى نمذجة رياضية تضيف عدم دقة إلى معامل الخسارة والتخزين الناتج. هذا ليس هو الحال بالنسبة لنظام قائم على الملف.

في الختام ، يقيس التحليل الميكانيكي الديناميكي (DMA) معامل الخسارة والتخزين والمعامل المعقد و Tan () كدالة لعمق التلامس والوقت والتردد. تسمح مرحلة التسخين الاختيارية بتحديد درجة حرارة انتقال طور المواد أثناء التحليل الميكانيكي الديناميكي (DMA). توفر أجهزة اختبار NANOVEA الميكانيكية وحدات Nano و Micro متعددة الوظائف لا مثيل لها على منصة واحدة. تشتمل كل من وحدات Nano و Micro على جهاز اختبار الخدش واختبار الصلابة وأوضاع اختبار التآكل ، مما يوفر أوسع نطاق من الاختبارات وأكثرها سهولة في الاستخدام متاحًا على وحدة واحدة.

الآن ، لنتحدث عن طلبك

الجسيمات الدقيقة: قوة الضغط والمسافة البادئة الدقيقة

جزيئات دقيقة

قوة الضغط والمسافة البادئة الدقيقة
عن طريق اختبار الأملاح

مؤلف:
خورخي راميريز

تمت مراجعته من:
جوسلين اسبارزا

مقدمة

أصبحت قوة الانضغاط أمرًا حيويًا لقياس مراقبة الجودة في تطوير وتحسين الجسيمات الدقيقة الجديدة والقائمة والسمات الدقيقة (الركائز والمجالات) التي نراها اليوم. للجسيمات الدقيقة أشكال وأحجام مختلفة ويمكن تطويرها من السيراميك والزجاج والبوليمرات والمعادن. تشمل الاستخدامات توصيل الأدوية ، وتعزيز نكهة الطعام ، والتركيبات الخرسانية من بين العديد من الاستخدامات الأخرى. يعد التحكم في الخواص الميكانيكية للجسيمات الدقيقة أو الميزات الدقيقة أمرًا بالغ الأهمية لنجاحها ويتطلب القدرة على التوصيف الكمي لسلامتها الميكانيكية  

أهمية العمق مقابل قوة ضغط التحميل

أدوات قياس الضغط القياسية ليست قادرة على تحمل الأحمال المنخفضة وتفشل في توفير ما يكفي بيانات العمق للجسيمات الدقيقة. باستخدام Nano أو تسليط دقيق، يمكن قياس قوة ضغط النانو أو الجسيمات الدقيقة (الناعمة أو الصلبة) بدقة ودقة.  

هدف القياس

في مذكرة التطبيق هذه نقيس  قوة ضغط الملح مع ال NANOVEA الفاحص الميكانيكي في وضع المسافة البادئة الدقيقة.

نانوفيا

CB500

شروط الاختبار

أقصى قوة

٣٠ نيوتن

معدل التحميل

60 نيوتن / دقيقة

معدل التفريغ

60 نيوتن / دقيقة

نوع إندينتر

لكمة مسطحة

فولاذ | قطر 1 مم

منحنيات الحمل مقابل العمق

النتائج والمناقشة

الارتفاع وقوة الفشل وقوة الجسيم 1 والجسيم 2

تم تحديد فشل الجسيمات على أنها النقطة التي بدأ فيها المنحدر الأولي لمنحنى القوة مقابل العمق في الانخفاض بشكل ملحوظ ، ويظهر هذا السلوك أن المادة وصلت إلى نقطة العائد ولم تعد قادرة على مقاومة قوى الانضغاط المطبقة. بمجرد تجاوز نقطة العائد ، يبدأ عمق المسافة البادئة في الزيادة بشكل كبير خلال فترة التحميل. يمكن رؤية هذه السلوكيات في منحنيات الحمل مقابل العمق لكلتا العينات.

خاتمة

في الختام ، لقد أظهرنا كيف نانوفيا اختبار ميكانيكي في وضع المسافة البادئة الدقيقة أداة رائعة لاختبار قوة الضغط للجسيمات الدقيقة. على الرغم من أن الجسيمات التي تم اختبارها مصنوعة من نفس المادة ، إلا أنه يُشتبه في أن نقاط الفشل المختلفة التي تم قياسها في هذه الدراسة كانت على الأرجح بسبب الشقوق الدقيقة الموجودة مسبقًا في الجسيمات وتفاوت أحجام الجسيمات. وتجدر الإشارة إلى أنه بالنسبة للمواد الهشة ، تتوفر مستشعرات انبعاث صوتية لقياس بداية انتشار الشقوق أثناء الاختبار.


ال
نانوفيا اختبار ميكانيكي يوفر قرارات إزاحة العمق وصولاً إلى مستوى النانومتر الفرعي ،
مما يجعلها أداة رائعة لدراسة الجسيمات الدقيقة أو السمات أيضًا. لنعومة وهشاشة
المواد ، الأحمال تصل إلى 0.1mN ممكنة مع وحدة المسافة البادئة النانوية الخاصة بنا

الآن ، لنتحدث عن طلبك

السيراميك: رسم خرائط سريع بميزة تحديد المسافة النانوية لاكتشاف الحبوب

مقدمة

 

nanoindentation أصبحت تقنية مطبقة على نطاق واسع لقياس السلوكيات الميكانيكية للمواد على نطاقات صغيرةأنا ثانيا. يمكن لمنحنيات إزاحة الحمل عالية الدقة الناتجة عن قياس المسافة البادئة النانوية أن توفر مجموعة متنوعة من الخصائص الفيزيائية والميكانيكية، بما في ذلك الصلابة، ومعامل يونج، والزحف، وصلابة الكسر، وغيرها الكثير.

 

 

أهمية المسافة البادئة لرسم الخرائط السريعة

 

أحد الاختناقات الهامة لمزيد من تعميم تقنية النانو هو استهلاك الوقت. يمكن أن يستغرق رسم خرائط الخصائص الميكانيكية عن طريق إجراء الحفر النانوي التقليدي ساعات بسهولة مما يعيق تطبيق التقنية في صناعات الإنتاج الضخم، مثل أشباه الموصلات والفضاء والأنظمة الكهروميكانيكية الدقيقة والمنتجات الاستهلاكية مثل بلاط السيراميك وغيرها الكثير.

يمكن أن يكون التعيين السريع أمرًا ضروريًا في صناعة تصنيع بلاط السيراميك، ويمكن أن توفر تعيينات معامل الصلابة ويونغ عبر بلاطة سيراميك واحدة توزيعًا للبيانات التي تشير إلى مدى تجانس السطح. يمكن تحديد المناطق الأكثر ليونة على البلاط في هذه الخريطة وإظهار المواقع الأكثر عرضة للفشل من التأثيرات المادية التي تحدث على أساس يومي في مسكن شخص ما. يمكن إجراء التعيينات على أنواع مختلفة من البلاطات لإجراء دراسات مقارنة وعلى مجموعة من البلاطات المماثلة لقياس اتساق البلاط في عمليات مراقبة الجودة. يمكن أن يكون الجمع بين إعدادات القياسات شاملاً ودقيقًا وفعالاً باستخدام طريقة التعيين السريعة.

 

هدف القياس

 

في هذه الدراسة ، فإن Nanovea اختبار ميكانيكي، في وضع FastMap يتم استخدامه لرسم خريطة للخصائص الميكانيكية لبلاط الأرضية بسرعات عالية. نعرض قدرة جهاز الاختبار الميكانيكي Nanovea على إجراء تعيينين سريعين للمسافة النانوية بدقة عالية وإمكانية التكرار.

 

شروط الاختبار

 

تم استخدام جهاز اختبار Nanovea الميكانيكي لإجراء سلسلة من المسافات البادئة النانوية باستخدام وضع FastMap على بلاط الأرضية باستخدام مسافة بادئة من Berkovich. يتم تلخيص معلمات الاختبار أدناه لمصفوفتي المسافة البادئة اللتين تم إنشاؤهما.

 

الجدول 1: ملخص معلمة الاختبار.

 

النتائج والمناقشة 

 

الشكل 1: عرض ثنائي وثلاثي الأبعاد لرسم خرائط صلابة 625 مسافة بادئة.

 

 

 

الشكل 2: صورة مجهرية لمصفوفة ذات مسافة بادئة 625 تعرض الحبوب.

 

 

تم إجراء مصفوفة ذات مسافة بادئة 625 على 0.20 مم2 منطقة بها حبوب كبيرة مرئية. كان لهذه الحبوب (الشكل 2) صلابة متوسطة أقل من السطح الكلي للبلاط. يسمح برنامج Nanovea الميكانيكي للمستخدم برؤية خريطة توزيع الصلابة في الوضع ثنائي وثلاثي الأبعاد الموضح في الشكل 1. وباستخدام التحكم عالي الدقة في الموضع لمرحلة العينة، يتيح البرنامج للمستخدمين استهداف مناطق مثل هذه للتعمق رسم خرائط الخواص الميكانيكية.

الشكل 3: عرض ثنائي وثلاثي الأبعاد لرسم خرائط صلابة 1600 مسافة بادئة.

 

 

الشكل 4: صورة مجهرية لمصفوفة ذات مسافة بادئة 1600.

 

 

تم أيضًا إنشاء مصفوفة ذات مسافة بادئة تبلغ 1600 مسافة على نفس البلاط لقياس تجانس السطح. هنا مرة أخرى، يتمتع المستخدم بالقدرة على رؤية توزيع الصلابة في الوضع ثلاثي الأبعاد أو ثنائي الأبعاد (الشكل 3) بالإضافة إلى صورة المجهر للسطح ذي المسافة البادئة. استناداً إلى توزيع الصلابة المقدم، يمكن أن نستنتج أن المادة مسامية بسبب التشتت المتساوي لنقاط بيانات الصلابة العالية والمنخفضة.

بالمقارنة مع إجراءات التحسس النانوي التقليدية، فإن وضع FastMap في هذه الدراسة أقل استهلاكًا للوقت وأكثر فعالية من حيث التكلفة. فهو يتيح رسم خرائط كمية سريعة للخصائص الميكانيكية بما في ذلك الصلابة ومعامل يونغ ويوفر حلاً للكشف عن الحبوب واتساق المواد وهو أمر بالغ الأهمية لمراقبة الجودة لمجموعة متنوعة من المواد في الإنتاج الضخم.

 

 

خاتمة

 

في هذه الدراسة، عرضنا قدرة جهاز الاختبار الميكانيكي Nanovea على إجراء رسم خرائط سريع ودقيق للمسافة النانوية باستخدام وضع FastMap. تستخدم خرائط الخصائص الميكانيكية الموجودة على بلاط السيراميك التحكم في موضع المراحل (بدقة 0.2 ميكرومتر) وحساسية وحدة القوة لاكتشاف حبيبات السطح وقياس تجانس السطح بسرعة عالية.

تم تحديد معلمات الاختبار المستخدمة في هذه الدراسة بناءً على حجم المصفوفة ومواد العينة. يمكن اختيار مجموعة متنوعة من معلمات الاختبار لتحسين إجمالي وقت دورة المسافة البادئة إلى 3 ثوانٍ لكل مسافة بادئة (أو 30 ثانية لكل 10 مسافات بادئة).

تشتمل جميع وحدات Nano وMicro في جهاز اختبار Nanovea الميكانيكي على المسافة البادئة المتوافقة مع ISO وASTM، وأوضاع اختبار الخدش والتآكل، مما يوفر نطاقًا أوسع وأكثر سهولة في الاستخدام من الاختبارات المتاحة في نظام واحد. يعد نطاق Nanovea الذي لا مثيل له حلاً مثاليًا لتحديد النطاق الكامل للخصائص الميكانيكية للطلاءات والأغشية والركائز الرقيقة أو السميكة أو الناعمة أو الصلبة، بما في ذلك الصلابة، ومعامل Young، وصلابة الكسر، والالتصاق، ومقاومة التآكل وغيرها الكثير.

بالإضافة إلى ذلك، يتوفر ملف تعريف عدم الاتصال ثلاثي الأبعاد ووحدة AFM للتصوير ثلاثي الأبعاد عالي الدقة للمسافة البادئة والخدش ومسار التآكل بالإضافة إلى قياسات السطح الأخرى مثل الخشونة.

 

المؤلف: دوانجي لي، دكتوراه، مراجعة بيير ليرو وجوسلين إسبارزا

تحسين إجراءات التعدين باستخدام تقنية Microindendation

بحوث التعريف الدقيق ومراقبة الجودة

ميكانيكا الصخور هي دراسة السلوك الميكانيكي للكتل الصخرية ويتم تطبيقها في التعدين والحفر وإنتاج المكامن وصناعات البناء المدني. تسمح الأجهزة المتقدمة ذات القياس الدقيق للخصائص الميكانيكية بتحسين الأجزاء والإجراءات داخل هذه الصناعات. يتم ضمان إجراءات مراقبة الجودة الناجحة من خلال فهم ميكانيكا الصخور على النطاق الصغير.

تسليط دقيق هي أداة حاسمة تستخدم للدراسات المتعلقة بميكانيكا الصخور. تعمل هذه التقنيات على تطوير تقنيات الحفر من خلال توفير مزيد من الفهم لخصائص كتلة الصخور. يستخدم Microindentation لتحسين رؤوس الحفر التي تعمل على تحسين إجراءات التعدين. تم استخدام التأين الدقيق لدراسة تكوين الطباشير والمساحيق من المعادن. يمكن أن تشمل دراسات تحديد المسافة الدقيقة الصلابة ، ومعامل يونغ ، والزحف ، وإجهاد الإجهاد ، وصلابة الكسر ، والضغط بأداة واحدة.
 
 

هدف القياس

في هذا التطبيق Nanovea اختبار ميكانيكي يقيس صلابة فيكرز (Hv)، ومعامل يونغ، وصلابة الكسر لعينة الصخور المعدنية. تتكون الصخور من البيوتيت والفلسبار والكوارتز التي تشكل مركب الجرانيت القياسي. يتم اختبار كل منها على حدة.

 

النتائج والمناقشة

يتضمن هذا القسم جدولًا ملخصًا يقارن النتائج الرقمية الرئيسية للعينات المختلفة ، متبوعًا بقوائم النتائج الكاملة ، بما في ذلك كل مسافة بادئة تم إجراؤها ، مصحوبة بصور مجهرية للمسافة البادئة ، عند توفرها. تعرض هذه النتائج الكاملة القيم المقاسة لمعامل الصلابة ومعامل يونغ مثل عمق الاختراق (d) مع متوسطاتها وانحرافاتها المعيارية. يجب أن يؤخذ في الاعتبار أن الاختلاف الكبير في النتائج يمكن أن يحدث في حالة أن خشونة السطح في نفس نطاق حجم المسافة البادئة.


جدول ملخص للنتائج العددية الرئيسية للصلابة ومتانة الكسر

 

خاتمة

يوضح جهاز الاختبار الميكانيكي Nanovea إمكانية التكاثر ونتائج المسافة البادئة الدقيقة على السطح الصلب للصخور المعدنية. تم قياس معامل الصلابة ومعامل يونغ لكل مادة تشكل الجرانيت مباشرةً من منحنيات العمق مقابل منحنيات الحمل. كان السطح الخشن يعني الاختبار بأحمال أعلى قد تكون قد تسببت في حدوث تشققات دقيقة. قد يفسر التكسير الدقيق بعض الاختلافات التي تظهر في القياسات. لم تكن الشقوق ملحوظة من خلال الملاحظة المجهرية القياسية بسبب سطح عينة خشن. لذلك ، لا يمكن حساب أرقام صلابة الكسر التقليدية التي تتطلب قياسات طول الشقوق. بدلاً من ذلك ، استخدمنا النظام لاكتشاف بدء الشقوق من خلال الاضطرابات في العمق مقابل منحنيات الحمل مع زيادة الأحمال.

تم الإبلاغ عن أحمال حد الكسر عند الأحمال التي حدثت فيها حالات الفشل. على عكس اختبارات صلابة الكسر التقليدية التي تقيس ببساطة طول الكسر ، يتم الحصول على الحمل الذي يبدأ عنده كسر العتبة. بالإضافة إلى ذلك ، تسمح البيئة الخاضعة للرقابة والمراقبة عن كثب بقياس الصلابة لاستخدامها كقيمة كمية لمقارنة مجموعة متنوعة من العينات.

الآن ، لنتحدث عن طلبك

تقييم صلابة الأنسجة البيولوجية باستخدام Nanoindentation

أهمية التأثر النانوي للأنسجة البيولوجية

تتطلب الاختبارات الميكانيكية التقليدية (الصلابة والالتصاق والضغط والثقب وقوة الخضوع وما إلى ذلك) دقة وموثوقية أكبر في بيئات مراقبة الجودة الحالية مع مجموعة واسعة من المواد المتقدمة من الأنسجة إلى المواد الهشة. فشلت الأجهزة الميكانيكية التقليدية في توفير التحكم الدقيق في الحمل والدقة المطلوبة للمواد المتقدمة. تتطلب التحديات المرتبطة بالمواد الحيوية تطوير اختبارات ميكانيكية قادرة على التحكم الدقيق في الحمل على المواد شديدة الليونة. تتطلب هذه المواد أحمال اختبار منخفضة للغاية مع نطاق عمق كبير لضمان قياس الممتلكات المناسب. بالإضافة إلى ذلك ، يمكن إجراء العديد من أنواع الاختبارات الميكانيكية المختلفة على نظام واحد مما يسمح بوظائف أكبر. يوفر هذا مجموعة من القياسات المهمة على المواد الحيوية بما في ذلك الصلابة ومعامل المرونة ومعامل الفقد والتخزين والزحف بالإضافة إلى مقاومة الخدش ونقاط فشل قوة الخضوع.

 

هدف القياس

في هذا التطبيق ، يتم استخدام جهاز اختبار Nanovea الميكانيكي في وضع المسافة النانوية لدراسة معامل الصلابة والمرونة لثلاث مناطق منفصلة من بدائل المواد الحيوية على الدهون ، واللحوم الخفيفة ، ومناطق اللحوم المظلمة في بروسسيوتو.

تستند المسافة البادئة بالنانو إلى معايير المسافة البادئة الآلية ASTM E2546 و ISO 14577. وهي تستخدم طرقًا راسخة حيث يتم دفع طرف indenter من الهندسة المعروفة إلى موقع معين من مادة الاختبار مع زيادة الحمل الطبيعي المتحكم فيه. عند الوصول إلى أقصى عمق محدد مسبقًا ، يتم تقليل الحمل العادي حتى يحدث الاسترخاء التام. يتم تطبيق الحمل بواسطة مشغل بيزو ويتم قياسه في حلقة مضبوطة بخلية تحميل عالية الحساسية. أثناء التجارب ، تتم مراقبة موضع indenter بالنسبة لسطح العينة باستخدام مستشعر سعوي عالي الدقة. توفر منحنيات الحمل والإزاحة الناتجة بيانات خاصة بالطبيعة الميكانيكية للمادة المختبرة. النماذج القائمة تحسب الصلابة الكمية وقيم المعامل باستخدام البيانات المقاسة. المسافة النانوية مناسبة لحمل منخفض وقياسات عمق الاختراق بمقاييس نانومتر.

النتائج والمناقشة

تعرض هذه الجداول أدناه القيم المقاسة للصلابة ومعامل يونغ بمتوسطات وانحرافات معيارية. قد تسبب خشونة السطح العالية اختلافات كبيرة في النتائج بسبب حجم المسافة البادئة الصغيرة.

تحتوي منطقة الدهون على حوالي نصف صلابة مناطق اللحوم. تسببت معالجة اللحوم في أن تكون منطقة اللحم الداكنة أصعب من منطقة اللحم الفاتحة. معامل المرونة والصلابة لهما علاقة مباشرة بشعور الفم بمضغ مناطق الدهون واللحوم. تستمر منطقة الدهون واللحوم الخفيفة في الزحف بمعدل أعلى من اللحوم الداكنة بعد 60 ثانية.

النتائج التفصيلية - الدهون

النتائج التفصيلية - لحم خفيف

النتائج التفصيلية - اللحوم الداكنة

خاتمة

في هذا التطبيق، Nanovea اختبار ميكانيكي في وضع nanoindentation، تم تحديد الخواص الميكانيكية بشكل موثوق لمناطق الدهون واللحوم مع التغلب على خشونة سطح العينة العالية. وقد أظهر هذا القدرة الواسعة التي لا مثيل لها للاختبار الميكانيكي لشركة Nanovea. يوفر النظام في الوقت نفسه قياسات دقيقة للخصائص الميكانيكية للمواد شديدة الصلابة والأنسجة البيولوجية الناعمة.

تضمن خلية الحمل في التحكم في الحلقة المغلقة مع جدول بيزو قياسًا دقيقًا للمواد الهلامية الصلبة أو اللينة من 1 إلى 5 كيلو باسكال. باستخدام نفس النظام ، من الممكن اختبار المواد الحيوية بأحمال أعلى تصل إلى 400 نيوتن. يمكن استخدام التحميل متعدد الدورات لاختبار الإجهاد ويمكن الحصول على معلومات قوة الخضوع في كل منطقة باستخدام طرف ماسي أسطواني مسطح. بالإضافة إلى ذلك ، باستخدام التحليل الميكانيكي الديناميكي (DMA) ، يمكن تقييم خواص المرونة اللزجة ومعايير التخزين بدقة عالية باستخدام التحكم في حمل الحلقة المغلقة. تتوفر أيضًا الاختبارات في درجات حرارة مختلفة وتحت السوائل على نفس النظام.

لا يزال جهاز الاختبار الميكانيكي لـ Nanovea هو الأداة المتفوقة لتطبيقات البوليمر / الهلام البيولوجية واللينة.

الآن ، لنتحدث عن طلبك

تقييم الاهتراء والخدش للأسلاك النحاسية المعالجة بالسطح

أهمية تقييم اهتراء وخدش الأسلاك النحاسية

للنحاس تاريخ طويل من الاستخدام في الأسلاك الكهربائية منذ اختراع المغناطيس الكهربائي والتلغراف. يتم استخدام الأسلاك النحاسية في مجموعة واسعة من المعدات الإلكترونية مثل الألواح والعدادات وأجهزة الكمبيوتر وآلات الأعمال والأجهزة بفضل مقاومتها للتآكل وقابلية اللحام والأداء في درجات حرارة مرتفعة تصل إلى 150 درجة مئوية. يستخدم ما يقرب من نصف النحاس المستخرج في تصنيع الأسلاك الكهربائية وموصلات الكابلات.

تعد جودة سطح الأسلاك النحاسية أمرًا بالغ الأهمية لأداء خدمة التطبيق وعمره. قد تؤدي العيوب الدقيقة في الأسلاك إلى التآكل المفرط ، وبدء الشقوق وانتشارها ، وانخفاض الموصلية ، وقابلية اللحام غير الكافية. تزيل المعالجة المناسبة للأسطح النحاسية عيوب السطح الناتجة أثناء سحب الأسلاك مما يحسن مقاومة التآكل والخدش والتآكل. تتطلب العديد من تطبيقات الفضاء مع الأسلاك النحاسية سلوكًا متحكمًا لمنع حدوث عطل غير متوقع في المعدات. هناك حاجة إلى قياسات موثوقة وقابلة للقياس الكمي لتقييم مقاومة التآكل والخدش بشكل صحيح لسطح الأسلاك النحاسية.

 
 

 

هدف القياس

في هذا التطبيق ، نقوم بمحاكاة عملية تآكل متحكم بها لمعالجات مختلفة لأسطح الأسلاك النحاسية. اختبار الخدش يقيس الحمل المطلوب للتسبب في فشل الطبقة السطحية المعالجة. تعرض هذه الدراسة النانوفيا ثلاثي الأبعاد و اختبار ميكانيكي كأدوات مثالية لتقييم ومراقبة جودة الأسلاك الكهربائية.

 

 

إجراءات الاختبار وإجراءاته

تم تقييم معامل الاحتكاك (COF) ومقاومة التآكل لمعالجتين سطحيتين مختلفتين على الأسلاك النحاسية (السلك A والسلك B) بواسطة مقياس Tribometer Nanovea باستخدام وحدة التآكل الترددية الخطية. كرة Al₂O₃ (قطرها 6 مم) هي المادة المضادة المستخدمة في هذا التطبيق. تم فحص مسار التآكل باستخدام Nanovea مقياس عدم الاتصال ثلاثي الأبعاد. يتم تلخيص معلمات الاختبار في الجدول 1.

تم استخدام كرة Al₂O الملساء كمواد مضادة كمثال في هذه الدراسة. يمكن تطبيق أي مادة صلبة ذات شكل وتشطيب سطحي مختلفين باستخدام تركيبات مخصصة لمحاكاة حالة التطبيق الفعلية.

 

 

أجرى اختبار Nanovea الميكانيكي المجهز بقلم Rockwell C الماسي (نصف قطر 100 ميكرومتر) اختبارات خدش الحمل التدريجي على الأسلاك المطلية باستخدام وضع الخدش الصغير. يتم عرض معلمات اختبار الخدش وهندسة الأطراف في الجدول 2.
 

 

 

 

النتائج والمناقشة

ارتداء الأسلاك النحاسية:

يوضح الشكل 2 تطور COF للأسلاك النحاسية أثناء اختبارات التآكل. يُظهر السلك A COF ثابتًا بمقدار 0.4 ~ طوال اختبار التآكل بينما يُظهر السلك B COF من ~ 0.35 في أول 100 دورة ويزيد تدريجياً إلى ~ 0.4.

 

يقارن الشكل 3 مسارات اهتراء الأسلاك النحاسية بعد الاختبارات. قدم مقياس أبعاد عدم التلامس ثلاثي الأبعاد من Nanovea تحليلًا فائقًا للتشكيل التفصيلي لمسارات التآكل. يسمح بتحديد مباشر ودقيق لحجم مسار التآكل من خلال توفير فهم أساسي لآلية التآكل. يحتوي سطح السلك B على تلف كبير في مسار التآكل بعد 600 ثورة من اختبار التآكل. يُظهر العرض ثلاثي الأبعاد لمقياس التشكيل الجانبي إزالة الطبقة المعالجة السطحية من السلك B تمامًا مما أدى إلى تسريع عملية التآكل بشكل كبير. ترك هذا مسار تآكل مسطح على السلك B حيث تتعرض الركيزة النحاسية. قد يؤدي هذا إلى تقصير كبير في عمر المعدات الكهربائية حيث يتم استخدام السلك ب. بالمقارنة ، يُظهر السلك A تآكلًا خفيفًا نسبيًا يظهر من خلال مسار تآكل ضحل على السطح. لم تتم إزالة الطبقة المعالجة بالسطح على السلك A مثل الطبقة الموجودة على السلك B في نفس الظروف.

مقاومة خدش سطح الأسلاك النحاسية:

يوضح الشكل 4 مسارات الخدش على الأسلاك بعد الاختبار. تُظهر الطبقة الواقية للسلك A مقاومة جيدة للخدش. ينفصل عند حمولة تبلغ حوالي 12.6 نيوتن. وبالمقارنة ، فشلت الطبقة الواقية من السلك B عند حمل ~ 1.0 نيوتن.مثل هذا الاختلاف الكبير في مقاومة الخدش لهذه الأسلاك يساهم في أداء التآكل ، حيث يمتلك السلك A تعزيزًا كبيرًا ارتداء المقاومة. يوفر تطور القوة العادية و COF والعمق أثناء اختبارات الخدش الموضحة في الشكل 5 مزيدًا من المعلومات حول فشل الطلاء أثناء الاختبارات.

خاتمة

في هذه الدراسة الخاضعة للرقابة ، عرضنا مقياس تربومتر Nanovea الذي يجري تقييمًا كميًا لمقاومة التآكل للأسلاك النحاسية المعالجة بالسطح ، والاختبار الميكانيكي لـ Nanovea الذي يوفر تقييمًا موثوقًا لمقاومة خدش الأسلاك النحاسية. تلعب معالجة سطح الأسلاك دورًا مهمًا في الخواص الميكانيكية الميكانيكية خلال فترة حياتها. المعالجة المناسبة لسطح السلك مقاومة محسّنة للخدش والاحتكاك بشكل كبير ، وهو أمر بالغ الأهمية في أداء وعمر الأسلاك الكهربائية في البيئات القاسية.

يوفر مقياس الاحتكاك من Nanovea اختبارًا دقيقًا ومتكررًا للتآكل والاحتكاك باستخدام أوضاع دوارة وخطية متوافقة مع ISO و ASTM ، مع تآكل اختياري بدرجة حرارة عالية ، وتزييت ، ووحدات تآكل تريبو متوفرة في نظام واحد متكامل مسبقًا. تعد مجموعة Nanovea التي لا مثيل لها حلاً مثاليًا لتحديد النطاق الكامل للخصائص الترايبولوجية للطلاءات والأغشية والركائز الرقيقة أو السميكة أو الناعمة أو الصلبة.

الآن ، لنتحدث عن طلبك

قوة الغلة والشد للصلب والألمنيوم

أهمية قوة الإنتاجية وقياس قوة الشد القصوى باستخدام المسافة البادئة

تم اختبار قوة الخضوع التقليدية وقوة الشد القصوى باستخدام آلة اختبار شد كبيرة تتطلب قوة هائلة لفصل عينات الاختبار عن بعضها. يعد تشغيل العديد من كوبونات الاختبار بشكل صحيح لمادة ما أمرًا مكلفًا ويستغرق وقتًا طويلاً حيث لا يمكن اختبار كل عينة إلا مرة واحدة. تخلق العيوب الصغيرة في العينة تباينًا ملحوظًا في نتائج الاختبار. غالبًا ما تؤدي التكوينات والمحاذاة المختلفة لأجهزة اختبار الشد في السوق إلى اختلافات جوهرية في ميكانيكا الاختبار والنتائج.

توفر طريقة المسافة البادئة المبتكرة من Nanovea بشكل مباشر قيم قوة الخضوع وقوة الشد المطلقة المماثلة للقيم التي تم قياسها بواسطة اختبارات الشد التقليدية. يفتح هذا القياس مجالًا جديدًا من إمكانيات الاختبار لجميع الصناعات. يقلل الإعداد التجريبي البسيط بشكل كبير من وقت تحضير العينة والتكلفة مقارنة بشكل القسيمة المعقد المطلوب لاختبارات الشد. يمكن إجراء قياسات متعددة على عينة واحدة بحجم صغير للمسافة البادئة. يمنع تأثير العيوب التي تظهر في كوبونات اختبار الشد التي تم إنشاؤها أثناء تصنيع العينة. تسمح قياسات YS و UTS على عينات صغيرة في منطقة محددة برسم الخرائط واكتشاف العيوب المحلية في خطوط الأنابيب أو الهياكل الآلية.
 
 

هدف القياس

في هذا التطبيق ، فإن Nanovea اختبار ميكانيكي يقيس قوة الخضوع وقوة الشد القصوى لعينات سبائك الفولاذ المقاوم للصدأ SS304 والألومنيوم Al6061. تم اختيار العينات وفقًا لقيم قوة الخضوع وقوة الشد القصوى المعترف بها عمومًا، والتي توضح مدى موثوقية طرق المسافة البادئة الخاصة بشركة Nanovea.

إجراءات الاختبار وإجراءاته

تم إجراء اختبارات قوة الغلة وقوة الشد القصوى على جهاز الفحص الميكانيكي Nanovea في تسليط دقيق وضع. تم استخدام طرف ماسي أسطواني مسطح بقطر 200 ميكرون لهذا التطبيق. تم اختيار سبائك SS304 و Al6061 لتطبيقها الصناعي الواسع وقيم قوة الخضوع المعترف بها عمومًا وقوة الشد المطلقة ، من أجل إظهار الإمكانات الكبيرة وموثوقية طريقة المسافة البادئة. تم صقل العينات ميكانيكيًا إلى تشطيب يشبه المرآة قبل الاختبار لتجنب خشونة السطح أو تأثير العيب على نتائج الاختبار. تم سرد شروط الاختبار في الجدول 1. تم إجراء أكثر من عشرة اختبارات على كل عينة لضمان تكرار قيم الاختبار.

النتائج والمناقشة

تظهر منحنيات إزاحة الحمل لعينات سبائك SS304 و Al6061 في الشكل 3 مع وجود بصمات مسافة بادئة مسطحة على عينات الاختبار المدرجة. يحسب تحليل منحنى التحميل على شكل "S" باستخدام خوارزميات خاصة طورتها Nanovea قوة الخضوع وقوة الشد القصوى. يتم حساب القيم تلقائيًا بواسطة البرنامج كما تم تلخيصها في الجدول 1. يتم سرد قيم قوة العائد وقوة الشد القصوى التي تم الحصول عليها بواسطة اختبارات الشد التقليدية للمقارنة.

 

خاتمة

في هذه الدراسة، عرضنا قدرة جهاز الاختبار الميكانيكي Nanovea في تقييم قوة الخضوع وقوة الشد القصوى لعينات صفائح الفولاذ المقاوم للصدأ وسبائك الألومنيوم. الإعداد التجريبي البسيط يقلل بشكل كبير من الوقت والتكلفة اللازمة لإعداد العينات المطلوبة لاختبارات الشد. يتيح حجم المسافة البادئة الصغيرة إجراء قياسات متعددة على عينة واحدة. تسمح هذه الطريقة بإجراء قياسات YS/UTS على عينات صغيرة ومناطق محلية، مما يوفر حلاً لرسم خرائط YS/UTS واكتشاف العيوب المحلية لخطوط الأنابيب أو الهيكل التلقائي.

تشتمل جميع وحدات Nano أو Micro أو Macro في جهاز اختبار Nanovea الميكانيكي على المسافة البادئة المتوافقة مع ISO وASTM، وأوضاع اختبار الخدش والتآكل، مما يوفر نطاقًا أوسع وأكثر سهولة في الاستخدام من الاختبارات المتوفرة في نظام واحد. يعد نطاق Nanovea الذي لا مثيل له حلاً مثاليًا لتحديد النطاق الكامل للخصائص الميكانيكية للطلاءات والأغشية والركائز الرقيقة أو السميكة أو الناعمة أو الصلبة، بما في ذلك الصلابة، ومعامل Young، وصلابة الكسر، والالتصاق، ومقاومة التآكل وغيرها الكثير. بالإضافة إلى ذلك، يتوفر ملف تعريف عدم الاتصال ثلاثي الأبعاد ووحدة AFM للتصوير ثلاثي الأبعاد عالي الدقة للمسافة البادئة والخدش ومسار التآكل بالإضافة إلى قياسات السطح الأخرى مثل الخشونة.

الآن ، لنتحدث عن طلبك

تقييم صلابة الأسنان باستخدام Nanoindentation

أهمية الإسناد النانوي للمواد الحيوية

 
مع العديد من الاختبارات الميكانيكية التقليدية (الصلابة ، والالتصاق ، والضغط ، والثقب ، وقوة الخضوع ، وما إلى ذلك) ، تتطلب بيئات مراقبة الجودة اليوم مع المواد الحساسة المتقدمة ، من المواد الهلامية إلى المواد الهشة ، دقة أكبر وتحكمًا في الموثوقية. فشلت الأجهزة الميكانيكية التقليدية في توفير التحكم الدقيق في الحمل والقرار المطلوب ؛ مصممة لاستخدامها في المواد السائبة. نظرًا لأن حجم المواد التي يتم اختبارها أصبح ذا أهمية أكبر ، فقد تم تطوير nanoindentation قدمت طريقة موثوقة للحصول على المعلومات الميكانيكية الأساسية على الأسطح الأصغر مثل البحث الذي يتم إجراؤه باستخدام المواد الحيوية. تتطلب التحديات المرتبطة بالمواد الحيوية تطوير اختبار ميكانيكي قادر على التحكم الدقيق في الحمل على المواد شديدة الليونة والهشة. أيضًا ، هناك حاجة إلى أدوات متعددة لإجراء العديد من الاختبارات الميكانيكية التي يمكن إجراؤها الآن على نظام واحد. يوفر Nanoindentation نطاقًا واسعًا من القياس بدقة دقيقة عند الأحمال التي يتم التحكم فيها بالنانو للتطبيقات الحساسة.

 

 

هدف القياس

في هذا التطبيق ، فإن Nanovea اختبار ميكانيكي، في وضع Nanoindentation، يتم استخدامه لدراسة صلابة ومعامل المرونة في العاج، والتسوس، ولب الأسنان. الجانب الأكثر أهمية في اختبار Nanoindentation هو تأمين العينة، هنا أخذنا سنًا مقطعًا ومثبتًا بالإيبوكسي تاركين المناطق الثلاثة محل الاهتمام مكشوفة للاختبار.

 

 

النتائج والمناقشة

يتضمن هذا القسم جدولًا ملخصًا يقارن النتائج الرقمية الرئيسية للعينات المختلفة ، متبوعة بقوائم النتائج الكاملة ، بما في ذلك كل مسافة بادئة يتم إجراؤها ، مصحوبة بصور ميكروية للمسافة البادئة ، عند توفرها. تعرض هذه النتائج الكاملة القيم المقاسة لمعامل الصلابة ومعامل يونغ مثل عمق الاختراق بمتوسطاتها وانحرافاتها المعيارية. يجب أن يؤخذ في الاعتبار أن الاختلاف الكبير في النتائج يمكن أن يحدث في حالة أن خشونة السطح في نفس نطاق حجم المسافة البادئة.

جدول ملخص للنتائج الرقمية الرئيسية:

 

 

خاتمة

في الختام ، لقد أوضحنا كيف أن جهاز اختبار Nanovea الميكانيكي ، في وضع Nanoindentation ، يوفر قياسًا دقيقًا للخصائص الميكانيكية للسن. يمكن استخدام البيانات في تطوير حشوات تتوافق بشكل أفضل مع الخصائص الميكانيكية للأسنان الحقيقية. تتيح قدرة تحديد المواقع لجهاز الفحص الميكانيكي Nanovea رسم خرائط كاملة لصلابة الأسنان عبر المناطق المختلفة.

باستخدام نفس النظام ، من الممكن اختبار صلابة كسر مادة الأسنان عند الأحمال العالية التي تصل إلى 200 نيوتن. يمكن استخدام اختبار تحميل متعدد الدورات على المزيد من المواد المسامية لتقييم المستوى المتبقي من المرونة. يمكن أن يعطي استخدام طرف ماسي أسطواني مسطح معلومات عن قوة الخضوع في كل منطقة. بالإضافة إلى ذلك ، باستخدام التحليل الميكانيكي الديناميكي DMA ، يمكن تقييم خصائص المرونة اللزجة بما في ذلك معاملات الفقد والتخزين.

تعتبر وحدة Nanovea nano مثالية لهذه الاختبارات لأنها تستخدم استجابة ملاحظات فريدة للتحكم بدقة في الحمل المطبق. لهذا السبب ، يمكن أيضًا استخدام وحدة النانو لإجراء اختبار دقيق للخدش. تضيف دراسة مقاومة الخدش والتآكل لمواد الأسنان ومواد الحشو إلى الفائدة الإجمالية للفاحص الميكانيكي. سيسمح استخدام طرف حاد بحجم 2 ميكرون للمقارنة الكمية للتشوه على مواد الحشو بالتنبؤ بشكل أفضل بالسلوك في التطبيقات الحقيقية. يعد التآكل متعدد التمريرات أو اختبار التآكل الدوراني المباشر أيضًا من الاختبارات الشائعة التي توفر معلومات مهمة عن الصلاحية طويلة المدى.

الآن ، لنتحدث عن طلبك