O-ring Surface Inspection
With 3D Profilometry

Prepared by
Jorge Ramirez
INTRO:

The O-ring is a very simple, yet precisely used elastomeric seal between two or more parts. This critical ring of elastomer is one of the most widely used mechanical components and continues to evolve with advances in elastomer research. Like virtually all materials industries, Nanotechnology research is opening new doors to further understanding elastomer at the nano level.

IMPORTANCE OF SURFACE METROLOGY INSPECTION FOR R&D AND QUALITY CONTROL

Because an O-ring is designed to seal between two or more parts it is vital to understand how the O-ring surface interacts with these parts. For example, if the O-ring surface is too rough it could cause abrasive wear, on the other hand if the surface is too smooth it can create problems with the seal. Understanding surface roughness/finish is just one of many surface parameters that are vital to quality control and the ultimate success of an O-ring. Other such parameters include: surface shape, form and topography defect among others. To insure the quality control of such parameters will heavily rely upon quantifiable, reproducible and reliable inspection of the O-ring surface. Precise measurement and evaluation of an O-ring surface can lead to the best selection surface roughness/finish and control measures. The Nanovea 3D Non-Contact Profilometers utilize chromatic confocal technology with unmatched capability to measure O-ring surfaces. Where other techniques fail to provide reliable data, due to probe contact, surface variation, angle, absorption or reflectivity, Nanovea Profilometers succeed.

MEASUREMENT OBJECTIVE

In this application, the Nanovea ST400 is used to measure the surface profile of an O-ring. Several surface parameters will be automatically calculated from the O-ring profile including the most common, S_a (average surface roughness), shape and form. Additionally, the cross section of the O-ring will also be further analyzed.
MEASUREMENT SET-UP & TIPS:

Measurements area randomly selected on the sample, drastic changes in surface topography is not an issue for Nanovea Profilometers. Small height variation down to nanometers up to 27mm of height variation can easily be measured.

MEASUREMENT PRINCIPLE:

The axial chromatism technique uses a white light source, where light passes through an objective lens with a high degree of chromatic aberration. The refractive index of the objective lens will vary in relation to the wavelength of the light. In effect, each separate wavelength of the incident white light will re-focus at a different distance from the lens (different height). When the measured sample is within the range of possible heights, a single monochromatic point will be focalized to form the image. Due to the confocal configuration of the system, only the focused wavelength will pass through the spatial filter with high efficiency, thus causing all other wavelengths to be out of focus. The spectral analysis is done using a diffraction grating. This technique deviates each wavelength at a different position, intercepting a line of CCD, which in turn indicates the position of the maximum intensity and allows direct correspondence to the Z height position.

Nanovea optical pens have zero influence from sample reflectivity. Variations require no sample preparation and have advanced ability to measure high surface angles. Capable of large Z measurement ranges. Measure any material: transparent/opaque, specular/diffusive, polished/rough.
RESULTS:

O-ring

3D Profile of O-ring

2D Profile Extraction of O-ring
3D Profile of O-ring Surface

2D Roughness Profile Extraction

Length = 0.5000 mm Pt = 4.797 μm Scale = 10.00 μm

Roughness Profile Extracted

(ISO 25178) Height Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sq</td>
<td>0.480 μm</td>
</tr>
<tr>
<td>Ssk</td>
<td>-1.231</td>
</tr>
<tr>
<td>Sku</td>
<td>8.681</td>
</tr>
<tr>
<td>Sp</td>
<td>3.499 μm</td>
</tr>
<tr>
<td>Sv</td>
<td>5.562 μm</td>
</tr>
<tr>
<td>Sz</td>
<td>9.062 μm</td>
</tr>
<tr>
<td>Sa</td>
<td>0.344 μm</td>
</tr>
</tbody>
</table>
3D Profile of O-ring Cross Section

2D Profile Extraction of O-ring Cross Section
<table>
<thead>
<tr>
<th>Height Parameter</th>
<th>Definition</th>
</tr>
</thead>
</table>
| **Sa** | **Arithmetical Mean Height** | Mean surface roughness.
\[
Sa = \frac{1}{A} \iint_A z(x,y) \, dx \, dy
\] |
| **Sq** | **Root Mean Square Height** | Standard deviation of the height distribution, or RMS surface roughness.
\[
Sq = \sqrt{\frac{1}{A} \iint_A z^2(x,y) \, dx \, dy}
\] Computes the standard deviation for the amplitudes of the surface (RMS). |
| **Sp** | **Maximum Peak Height** | Height between the highest peak and the mean plane. |
| **Sv** | **Maximum Pit Height** | Depth between the mean plane and the deepest valley. |
| **Sz** | **Maximum Height** | Height between the highest peak and the deepest valley. |
| **Ssk** | **Skewness** | Skewness of the height distribution.
\[
Ssk = \frac{1}{Sq^3} \left[\frac{1}{A} \iint_A z^4(x,y) \, dx \, dy \right]
\] Skewness qualifies the symmetry of the height distribution. A negative Ssk indicates that the surface is composed of mainly one plateau and deep and fine valleys. In this case, the distribution is sloping to the top. A positive Ssk indicates a surface with a lot of peaks on a plane. Therefore, the distribution is sloping to the bottom.
Due to the large exponent used, this parameter is very sensitive to the sampling and noise of the measurement. |
| **Sku** | **Kurtosis** | Kurtosis of the height distribution.
\[
Sku = \frac{1}{Sq^4} \left[\frac{1}{A} \iint_A z^4(x,y) \, dx \, dy \right]
\] Kurtosis qualifies the flatness of the height distribution.
Due to the large exponent used, this parameter is very sensitive to the sampling and noise of the measurement. |
CONCLUSION:

In this application, we have shown how the Nanovea ST400 3D Profilometer can precisely characterize both the topography and the nanometer details of the O-ring surface. (*Note, many other measurements could have also been made besides those shown here) With this information an O-ring surface can be investigated for R&D or quality control procedures. To further view in detail a 2D cross section can quickly be chosen to analyze, at nanometer range, special areas of interest. Special areas of interest could have been further analyzed with integrated AFM or Microscope module. Nanovea 3D Profilometers speeds range from 20mm/s to 1m/s for laboratory or research to the needs of hi-speed inspection; can be built with custom size, speeds, scanning capabilities, Class 1 Clean Room compliance, with Indexing Conveyor and for Inline or online Integration.